

Analyse par clustering de données d'IRM multiparamétrique appliquée au suivi de l'hétérogénéité intratumorale

Benjamin Lemasson, CR Inserm

Workshop FLI : "Analyse d'images médicales multimodales" Orsay, 22-23 mars 2018

Les glioblastomes

- Fréquence
 - Tumeurs peu fréquentes
 - 4 pour 100,000 habitants
 - \rightarrow 2400 nouveaux cas par an (France)
 - Extrêmement agressives
 - médiane de survie ≈ 14 mois ^[1]

- Seconde cause de mortalité des cancers chez les enfants et 3^{ème} chez l'adulte
- Caractéristiques ^[2]
 - Hétérogènes
 - Très infiltrantes
 - Hypoxiques (résistance au radio- et chimiothérapies)
 - Très angiogéniques

[1] Stupp R et al. N. Engl. J. Med; 2005 [2] Jain et al. Nat Rev Neurosci 2007

[1] Louis et al. Acta Neuropathol. 2007; [2] Sottoriva A. et al., PNAS. 2013

Grenoble

nstitut Neurosciences

Biomarqueurs des tumeurs cérébrales

Limites

 Ne reflète pas l'hétérogénéité tumorale

- Tardif
- Pas sensible aux modifications intralesionnelles (évolution de l'hétérogénéité)

• Très invasif

• En cas de combinaison, impossibilité de suivre l'effet de chaque traitement

Besoin de développer de nouveaux biomarqueurs qui soient: non-invasifs, plus précis et plus sensibles [3-4]

[1] Louis et al. Acta Neuropathol. 2007; [2] Wen et al J Clin Oncol. 2010

Développement de nouveaux paramètres IRM:

Imagerie de diffusion

Imagerie de diffusion (ADC)

• Carte de coefficient de diffusion apparent (ADC):

Solid / Cellular Tumor

Corrélation entre ADC et densité cellulaire et donc grade des gliomes

Galban C.J. et al.; NMR Biomed. 2017

Schmainda K.M; CNS Oncol. 2012

Développement de nouveaux paramètres IRM:

Imagerie de diffusion Perméabilité vasculaire

Perméabilité vasculaire (DCE)

► Extravasation d'un agent de contraste► Modification du T1 du voxel

Modélisation du signal Tofts et al. JMRI 1999.

$$C_{t}(t) = v_{p}C_{p}(t) + K^{trans} \int_{0}^{t} C_{p}(\tau) e^{-(t-\tau)k_{ep}} d\tau$$

plasma
Espace Extracellulaire
extravasculaire

→ Estimation de la perméabilité = K^{trans} = k_{pe}/v_e (min⁻¹)

Mesure de l'aire sous la courbe Cheng HL. JMRI 2009

→ Estimation de la perméabilité = Air sous la courbe

Evaluation thérapeutique

Modèle : Gliosarcome chez le rat Traitement : VEGF-Trap (Antiangiogénique) IRM = diffusion + perméabilité vasculaire

Les cartographies de la perméabilité vasculaire et de la diffusion sont sensibles aux modifications intratumorales induit par VEGF-Trap

Hoff et al., NRM in Biomed, 2011

Enrichissement des protocoles IRM → IRM multiparamétrique (IRMmp)

[1] Valable et al. NMRbiomed. 2008; [2] Lemasson et al. NMRbiomed. 2011; [3] Lemasson et al. Radiology 2012; [4] Lemasson et al. NMRbiomed. 2015

Evaluation thérapeutique par IRMmp

- Objectif:
 Déterminer si on peut distinguer l'effet de chaque thérapie lors
 d'un double traitement
- Modèle: 9L (n=20/groupes)
- Groupe: Contrôle, Anti-angiogénique, radiothérapie synchrotron, double traitement
- **IRM**: multiparamétrique (T-1, T2, T5, T8):

Evaluation thérapeutique par IRMmp

Résultats

Lemasson et al. NMRbiomed. 2015

9

Evaluation thérapeutique par IRMmp

Résultats

Lemasson et al. NMRbiomed. 2015

L'IRM multiparamétrique est prometteur mais... implique une évolution des méthodes d'analyses d'images

Exploitation de l'IRM multiparamétrique

IRM multiparamétrique > 15 paramètres

Préclinique chez le rat

Clinique

Très bonne « visualisation » de l'hétérogénéité intra-lésionnelle

Développement d'outils d'extraction d'information à partir d'IRM multiparamétrique pour :

- \rightarrow Affiner le diagnostique
- → Améliorer le suivi des patients

Méthode d'analyse

• Méthode dite « classique » d'analyse par Région d'intérêt

→ Limites

- Perte d'information sur l'hétérogénéité de la tumeur
- Difficulté d'interprétation (lien avec la biologie)
- Pas d'exploitation de l'aspect multiparamétrique

IRM multiparamétrique + clustering = Histologie *in vivo* par IRM?

Histologie in vivo par IRM

• IRM multiparamétrique & analyses statistiques

✓ Information sur l'hétérogénéité de la tumeur ✓ Interprétation biologique des images ✓ Exploitation de l'aspect multiparamétrique

Histologie in vivo par IRM diagnostic et interprétation biologique

• Suivi de 2 modèles de gliomes

Protocole :

- \rightarrow 2 modèles de gliome: F98 et C6 (n=13 par groupe)
- \rightarrow 6 paramètres IRM :
 - débit et volume sanguin, diffusion, perméabilité, oxygénation et consommation en oxygène
- → 3 régions d'intérêts (cortex et striatum sains et tumeur)

Coquery et al. « Microvascular MRI and unsupervised clustering yields histology-resembling images in two rat models of glioma » JCBFM 2014

Histologie in vivo par IRM diagnostic et interprétation biologique

• Suivi de 2 modèles de gliomes

Analyse prédictive: → Test de Leave-one-out

87% de bonnes prédiction sur le type de tumeur

Table 1. Tissu procedure ROIs	e type prediction based on the 'leave-one-out' Class prediction					
	C6 Wistar			F98 Fischer		
	S	С	Т	S	С	Т
C6 Wistar						
S (13)	10	3				
C (13)	4	3			6	
T (13)			11			2
F98 Fischer						
S (13)	1			9	3	
C (13)				2	11	
T (13)			2			11
C, cortex; ROIs, (26 animals, 3 F among six clas Fischer cortex,	regions of ROIs: tumo sses: C6 to Fischer st	f interest; or (T), Cor umor, Wi riatum.	S, striatum; T tex (C), Striati star cortex, \	ī, tumor. um (S)) w Wistar st	Each of the vas assigned riatum, F98	78 ROIs to one tumor,

Coquery et al. « Microvascular MRI and unsupervised clustering yields histology-resembling images in two rat models of glioma » JCBFM 2014

Histologie in vivo par IRM vers un diagnostic automatique

Reference model

Healthy MRI data (Y_H)

Search of the optimal number of reference clusters (K_H)

Approche par double clustering :

- Analyse par clustering (MMST) des cerveaux sains 1)
- Détection automatique des pixels pathologiques 2)

Analyse par clustering (MMST) des tumeurs 2)

- 3) Création de « signature » pour chaque tumeur
- Diagnostique automatique 4)

Reference model (f_H Healthy and pathological MRI data $(Y = Y_H \cup Y_P)$ Anomaly localization Search of the optimal anomaly threshold (t_{opt}) Abnormal data (Y_A) Preliminary subject segmentation Anomaly model Search of the optimal number of anomaly clusters (K_A) Anomaly model (f_A) Subject anomaly Subject signature labels extraction Fingerprint model Search of the optimal discriminative fingerprint model Preliminary fingerprint mode Spatial structure ilter small connected components Spatial cleaning (9 voxel box-type kernel) or with a healthy signature Search of the optimal discriminative fingerprint model Refined subject segmentation Refined fingerprint model

Histologie in vivo par IRM vers un diagnostic automatique

Grenoble

stitut Neurosciences

EEE TRANSACTIONS ON MEDICAL IMAGIN

Fully Automatic Lesion Localization and Characterization: Application to Brain Tumors Using Multiparametric Quantitative MRI Data

> Alexis Arnaud[®], Florence Forbes[®], Nicolas Coquery, Nora Collomb, Benjamin Lemasson, and Emmanuel L. Barbier

> > In press

Protocole :

Histologie in vivo par IRM vers un suivi personnalisé?

 \rightarrow 5 prametres IRM (BVf, VSI, ADC, Perm, StO₂)

 \rightarrow IRM tous les 2 jours

Histologie *in vivo* par IRM vers un transfert clinique rapide?

Est-on vraiment en présence de 2 tumeurs identiques ?

Histologie in vivo par IRM Intégration dans FLI-IAM

Take home messages

- L'IRM multiparamétrique devient un standard
- La plus-value de l'IRMmp n'est plus à démontrer
- La mise en place de nouveaux outils d'analyse d'image devient une nécessité
 - Gestion de large base de donnée
 - Automatisation des analyses

Remerciements ++

Financeurs:

Inserm Plan cancer Université Grenoble Alpes → Jeune chercheur
→ Programme HTE
→ Idex IRS