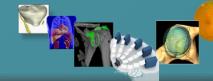


Workshop – Avancées récentes en analyse d'images médicales multi-modales



Radiomics for outcome modeling: state-of-the-art and challenges

Mathieu Hatt, PhD, HDR - CR INSERM

mathieu.hatt@inserm.fr

Laboratoire du Traitement de l'Information Médicale

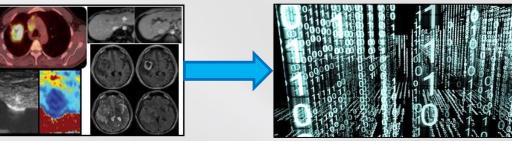
LaTIM, UMR INSERM-UBO 1101, Brest

Orsay, 23 Mars 2018

La science pour la santé

Introduction Radiomics: definition

- Radiomics is the high-throughput extraction of quantitative features from medical images¹
- □ The approach considers « pictures » as « minable » data²



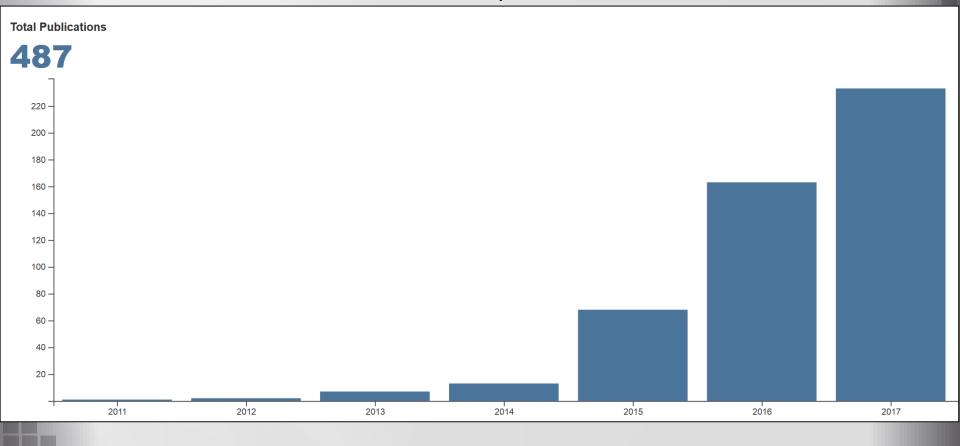
Radiomics aims at building models that are predictive of some patient outcome (e.g. survival, response to therapy...) or characteristic (tumor type,

phenotype, genotype...)

1. Lambin, et al. Radiomics: extracting more information from medical images using advanced feature analysis. *Eur J Cancer* 2012

2. Gillies, et al. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016

Radiomics: ~500 publications



nserm Source: web of science

Institut national
 dela santía et de la recherche médicale

thématiques

NIH-PA Author Manuscript

e la santé et de la recherche médir

The terms "radiomics" and "radiogenomics" were first employed in 2010 to describe how imaging features can reflect gene expression:

single diffusion weighting. Although quantitative values of diffusion are not derived, the data are nonetheless very amenable to pixelwise analysis of heterogeneity.

Anatomic Imaging and gene expression patterns: Radiomics

Referring again to figure 1, the physiology and anatomy of organs and tumors is driven by gene expression patterns which are a product of cellular genetics interfacing with the microenvironment. Over the last few years, it has become clear that distinct sub-regions of tumors, identifiable by MR imaging, have distinct gene expression patterns (31, 42–44). This indicates that underlying molecular biology can affect the "anatome". Recently, there have been attempts to determine if quantitative analysis of the anatome can be used to infer an underlying molecular gene expression pattern. This involves "radiomics" which is the extraction of quantitative features from radiographic images. Relating these to gene expression patterns using sophisticated bioinformatic approaches is sometimes termed

Clin Radiol. Author manuscript; available in PMC 2014 May 04.

Gillies et al.

Page 5

"radiogenomics". The central hypothesis of cancer radiomics is that tumor imaging features

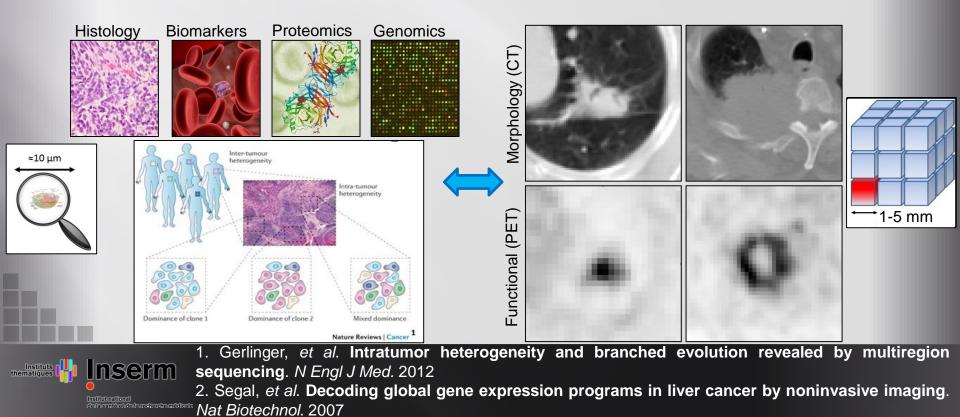
Gillies, *et al.* The biology underlying molecular imaging in oncology: from genome to anatome and back again. *Clin Radiol* 2010

Introduction Radiomics: is this really new?

- The term radiomics has become popular since 2012
- Textural features (a large chunck of radiomics features) exist since the 70's and have been used in medical imaging since the 90's ^[1-3]
- Numerous publications before 2012 (quantification) could be categorized as « radiomics studies »
- Some « new » elements of radiomics:
 - Larger number of features (>hundreds) / « highthroughput »
 - Relying on machine learning (selection/classifier)
 - Link with biology (including genetics)

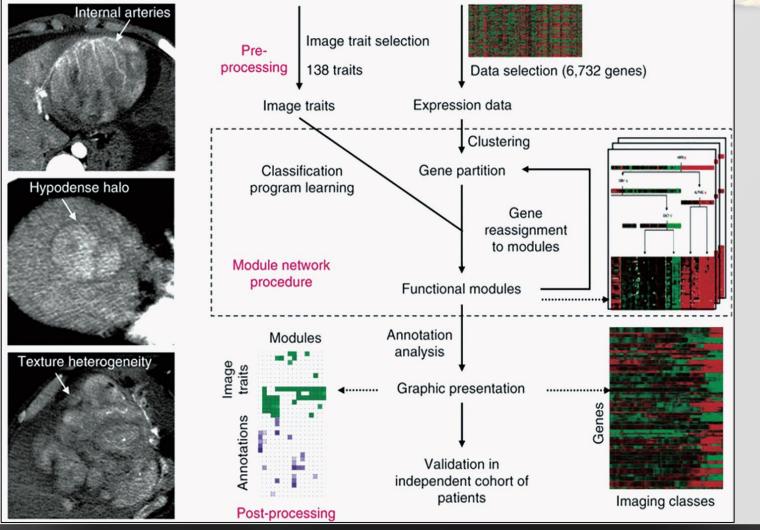
 Schad, et al. MR tissue characterization of intracranial tumors by means of texture analysis. Magn Reson Imaging 1993
 Mir, et al. Texture analysis of CT-images for early detection of liver malignancy. Biomed Sci Instrum. 1995
 El Naqa, et al. Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern Recognit. 2009

- Macroscopic/microscopic heterogenity
 - Tumours are heterogeneous entities ^[1]
 - Genetic, cellular, tissular
 - <u>Hypothesis</u>: caracteristics in images (macro scale) reflect at least partly caracteristics in smaller scales (including genetic) ^[2]

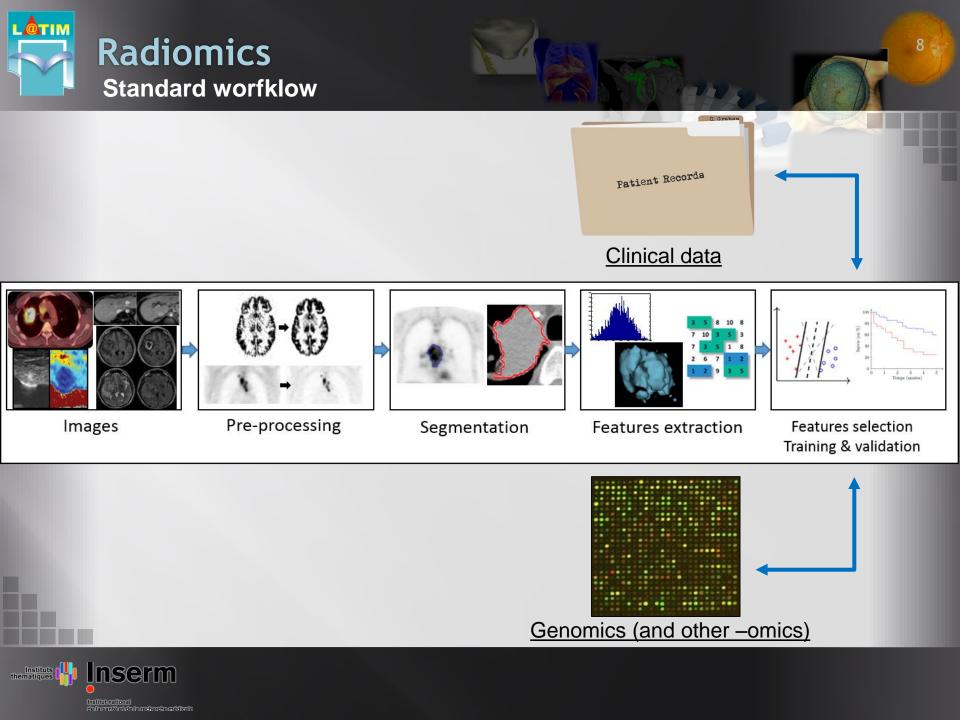


Instituts thématiques

Introduction Early works (example)

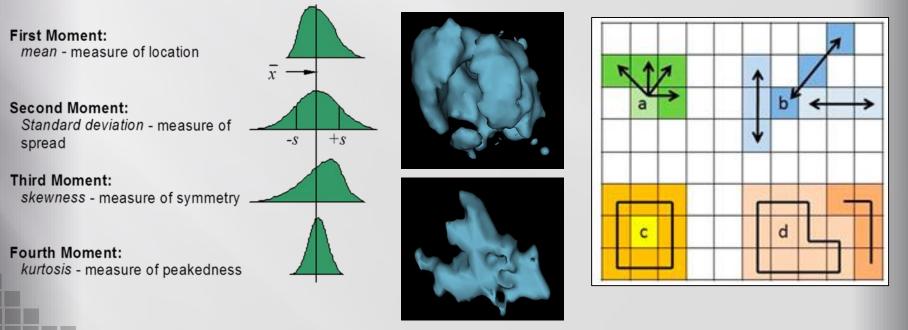


Segal, et al. Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat Biotechnol. 2007



Instituts thématiques

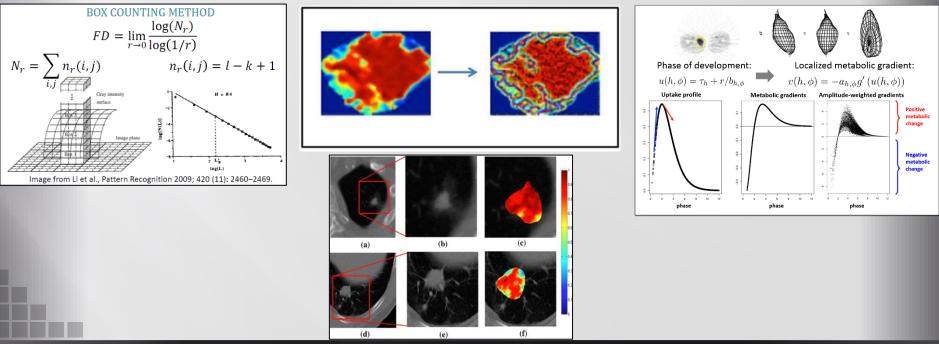
- « Usual » radiomics:
- Intensity-based (e.g. histogram)
- Shape descriptors (e.g. sphericity)
- Texture analysis 2nd or higher order (e.g. GLCM)



Lambin, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 2012

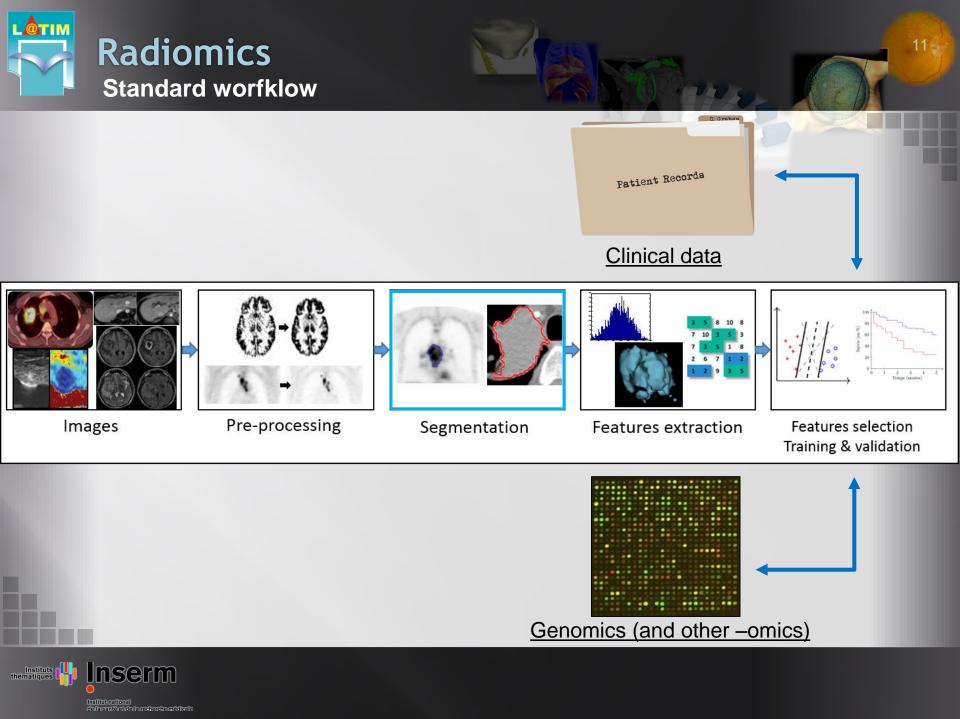
Less frequently used / more recent:

- Fractal analysis¹
- Filter-based (e.g. Law's, Riesz²...)
- Others (metabolic gradient³, CoLIAGE⁴...)



Michallek, et al. Fractal analysis in radiological and nuclear medicine perfusion imaging: a systematic review. Eur Radiol. 2014
 Citigeda, et al. A 3-D Riesz-Covariance Texture Model for Prediction of Nodule Recurrence in Lung CT. IEEE Trans Med Imaging. 2016
 Wolsztynski, et al. Localized metabolic gradient as an independent prognostic variable from FDG-PET in sarcoma. SNMMI. 2017
 Prasanna, et al. Co-occurrence of Local Anisotropic Gradient Orientations (CoLIAGe): A new radiomics descriptor. Sci Rep. 2016

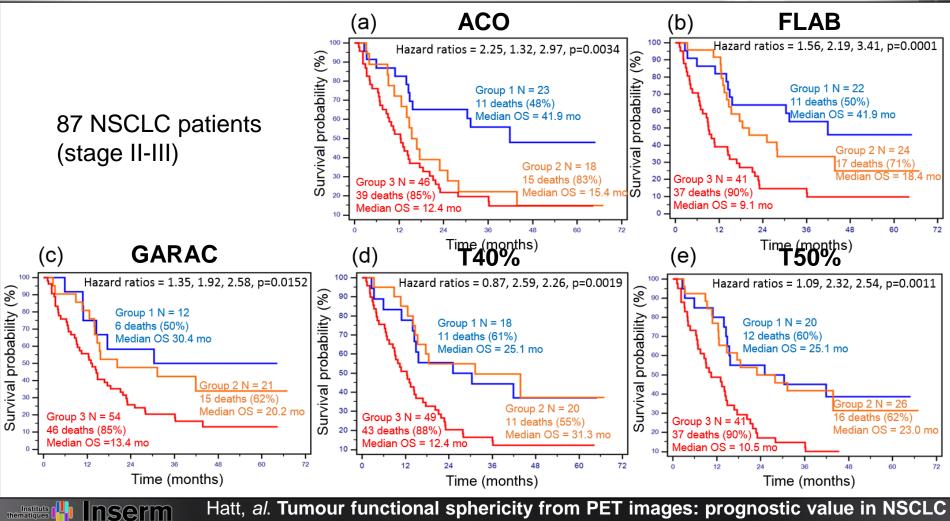
10



Institut national de la santé et de la recherche médicale

Segmentation step: how critical for radiomics?

12

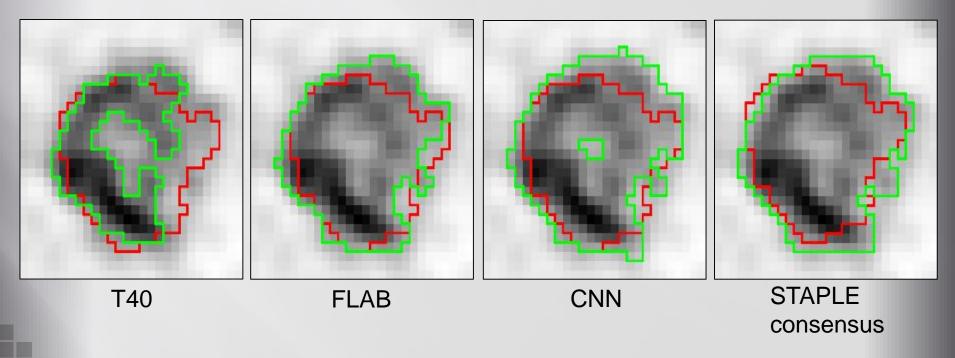


and impact of delineation method. Eur J Nucl Med Mol Imaging 2018

Segmentation step: how critical for radiomics?

13

- Potential solutions:
 - Use ensemble / consensus methods (e.g. STAPLE)¹



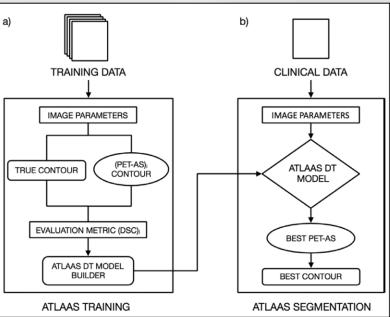
Hatt, *et al.* The first MICCAI challenge on PET tumor segmentation. *Med Image Anal.* 2018
 Berthon, *et al.* ATLAAS: an automatic decision tree-based learning algorithm for advanced image segmentation in positron emission tomography. *Phys Med Biol* 2016

Inserm

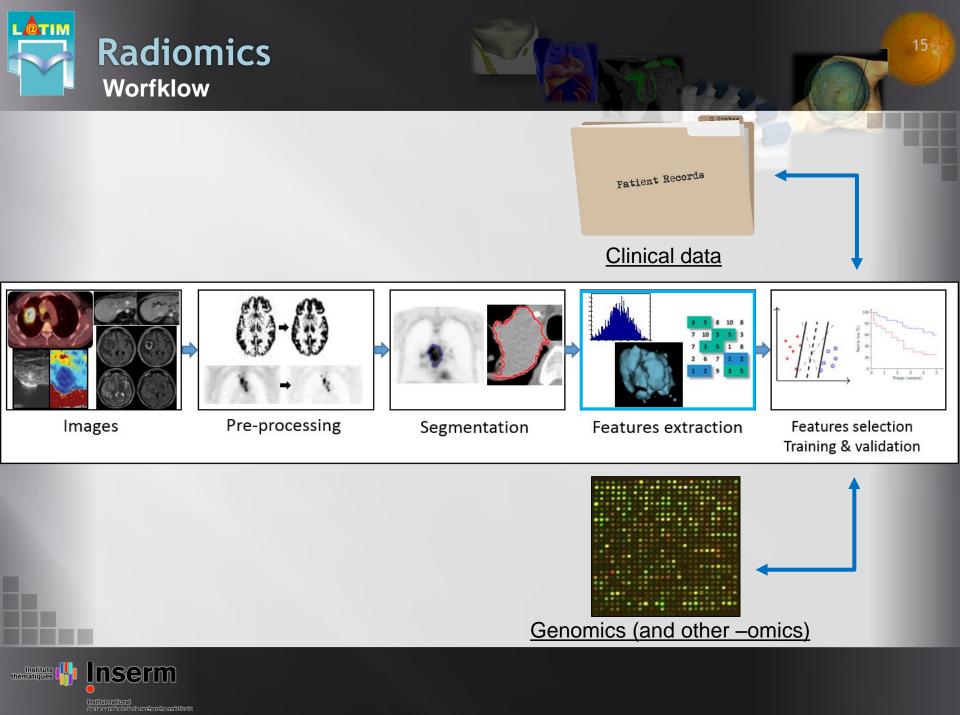
Segmentation step: how critical for radiomics? Ø

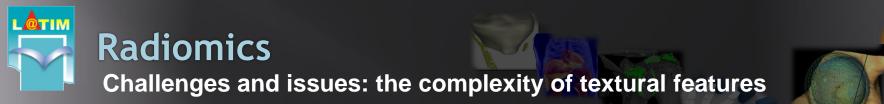
14

- Potential solutions:
 - Use ensemble / consensus methods (e.g. STAPLE)¹
 - Use machine learning models that select the best method for a given configuration (e.g. ATLAAS)²

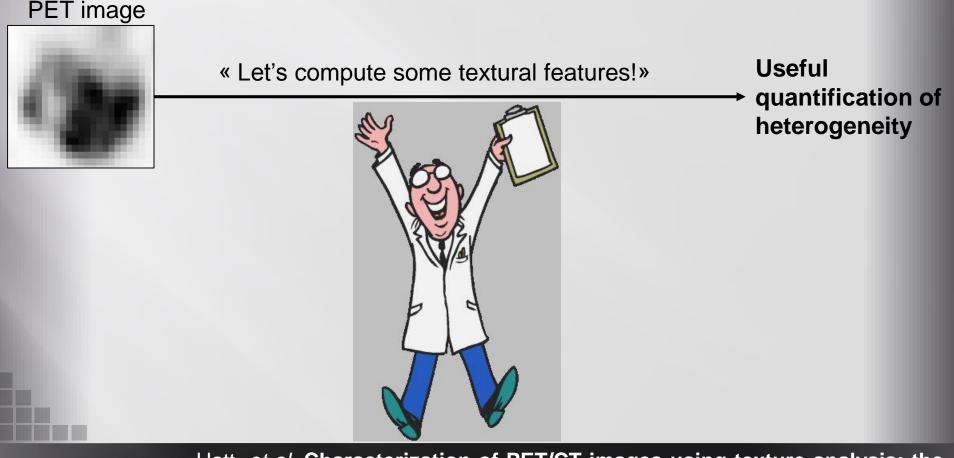


1. Hatt, et al. The first MICCAI challenge on PET tumor segmentation. Med Image Anal. 2018 2. Berthon, et al. ATLAAS: an automatic decision tree-based learning algorithm for advanced image segmentation in positron emission tomography. Phys Med Biol 2016 Institut national de la santé et de la recherche médicale





Workflow complexity



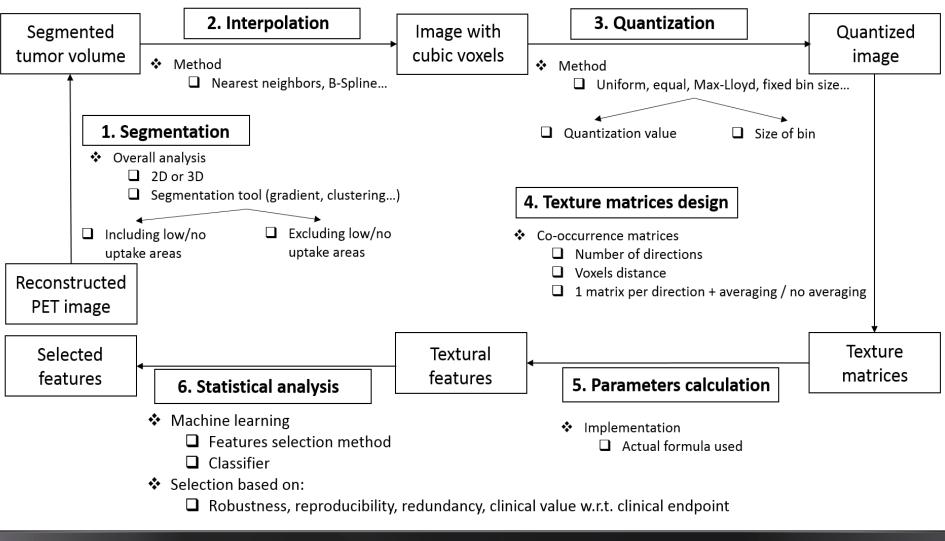
Hatt, et al. Characterization of PET/CT images using texture analysis: the past, the present... any future? Eur J Nucl Med Mol Imaging 2017

16

Radiomics

ГМ

Instituts thématiques Challenges and issues: the complexity of textural features

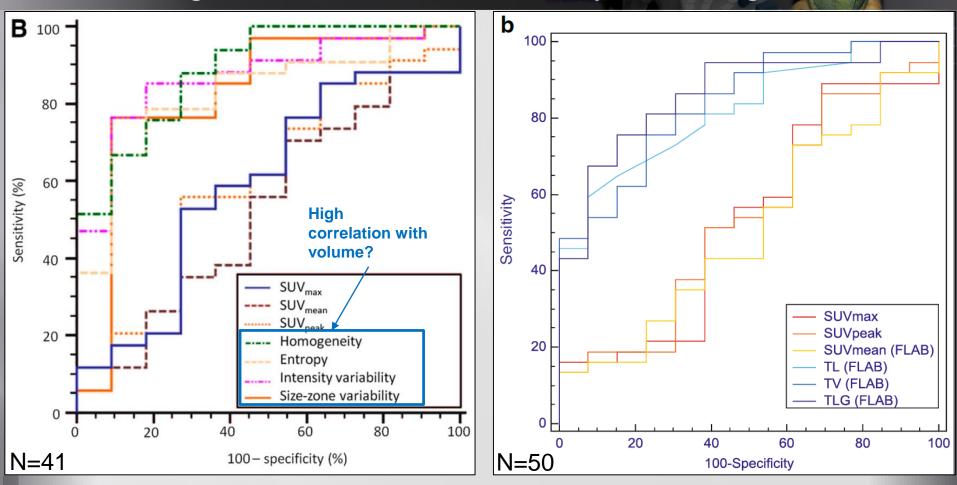


Hatt, *et al.* Characterization of PET/CT images using texture analysis: the past, the present... any future? *Eur J Nucl Med Mol Imaging* 2017

17

Radiomics

Challenges and issues: the volume/intensity confounding issue



FDG PET, esophageal cancer patients

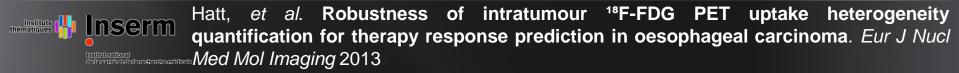
Tixier, et al. Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images INSERIM predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med 2011

Hatt, *et al.* Baseline ¹⁸F-FDG PET image-derived parameters for therapy response prediction in oesophageal

 Table 2 Correlations (Pearson coefficients) between parameters derived from FLAB delineations on noncorrected PET images. Significant correlation are shown in bold

19

Parameter	SUV _{mean}	MATV	Entropy	Homogeneity	Dissimilarity	-	Size-zone variability	Zone percentage	High intensity emphasis	Area under the curve of the cumulative histogram
SUV _{mean}	1.00	0.20	0.30 -	-0.10	-0.02	0.08	0.09	-0.40	0.40	-0.50
MATV		1.00	0.82	0.69	-0.77	0.97	-0.16	-0.70	-0.22	0.07
Entropy			1.00	0.60	-0.80	0.77	-0.25	-0.90	-0.08	-0.07
Homogeneity				1.00	-0.93	0.80	-0.36	-0.42	-0.67	0.59
Dissimilarity					1.00	-0.83	0.41	0.60	0.58	-0.45
Intensity variability						1.00	-0.25	-0.62	-0.41	0.28
Size-zone variability							1.00	0.24	0.43	-0.32
Zone percentage								1.00	-0.18	0.32
High intensity emphasis									1.00	-0.97
Area under the curve of the cumulative histogram										1.00



Radiomics Challenges and issues: the volume/intensity confounding issue

20

LOTIM

Instituts thématiques

Parameter	FT42%	AT	FLAB	FLAB PVC
SUV _{mean}	0.66	0.65	0.64	0.60
MATV	0.84	0.87	0.89	0.87
Entropy	0.84	0.86	0.88	0.85
Homogeneity	0.74 ^a	0.82	0.86 ^a	0.87
Dissimilarity	0.74 ^a	0.81	0.85 ^a	0.88
Intensity variability	0.85	0.87	0.90	0.88
Size-zone variability	0.66	0.70	0.72	0.86
Zone percentage	0.74	0.78	0.81	0.82
High intensity emphasis	0.59	0.65	0.65 ^a	0.83^{a}
Area under the curve of the cumulative histogram	0.56	0.60	0.60 ^a	0.77^{a}

Hatt, et al. Robustness of intratumour ¹⁸F-FDG PET uptake heterogeneity quantification for therapy response prediction in oesophageal carcinoma. *Eur J Nucl* Med Mol Imaging 2013

Radiomics Challenges and issues: the volume/intensity confounding issue

CONCLUSION

Each PET-imaged tumor is a single sampling of all radioactivities that are physically and biologically permissible for that particular scanner-tumor combination. Because image heterogeneity statistics accrue manifestations of possibilities, it is the very nature of these statistics to reflect small sample sizes. Thus, inclusion of small tumor volumes necessarily biases tracer uptake heterogeneity studies toward statistically significant differences even when no difference in uptake exists. We have argued that this bias is lessened if all ROIs included in comparative heterogeneity analyses are above a minimum number of voxels. We have described a technique for computing this number that, when applied to our specific ¹⁸F-FDG PET image data, yields a minimum comparison volume of 45 cm^3 .

Brooks, et al. The effect of small tumor volumes on studies of intratumoral heterogeneity of tracer uptake. J Nucl Med 2014

Radiomics

Challenges and issues: the volume/intensity confounding issue

Example Heterogeneity Statistic

We computed the local information entropy of a 2-dimensional image as described by Haralick et al. (13). In brief, the cooccurrence matrix describes the probability p that a pixel of a shade i occurs next to a pixel of shade j. This matrix can be computed for various directions, pixel separations, and bit depths. We computed the horizontal and vertical cooccurrence matrices for the nearest pixel neighbors of 8-bit gray-scale images. From each of these matrices, the local entropy

$$h = -\sum_{j=103}^{255} \sum_{i=103}^{255} p(i,j) \ln p(i,j)$$
 Eq. 1

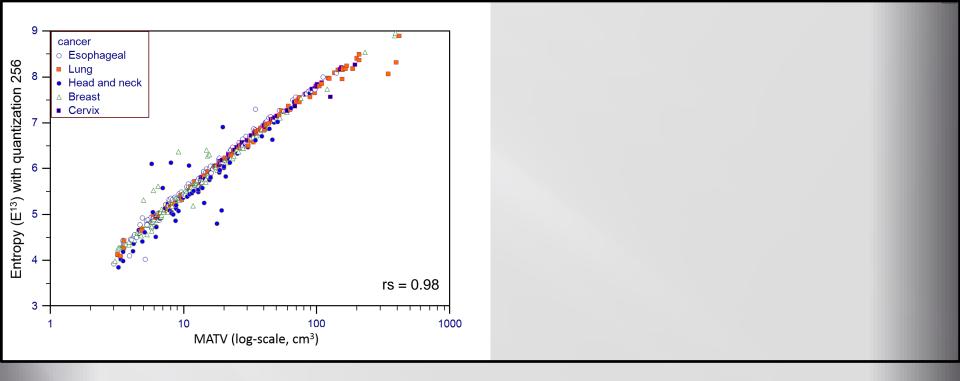
was computed for each direction and then root-mean-square-averaged to obtain a single local entropy value. The limits on the summations reflect the 40% clinical threshold within the 8-bit (0-255) color scale.

- A single texture: entropy_{GLCM}
- Calculated following one single workflow:
 - Linear discretization into 152 bins
 - 2 GLCM matrices for 2 directions (vertical+horizontal) followed by averaging

Brooks, et al. The effect of small tumor volumes on studies of intratumoral heterogeneity of tracer uptake. J Nucl Med 2014

23

 $256 \rightarrow 64$ grey-levels

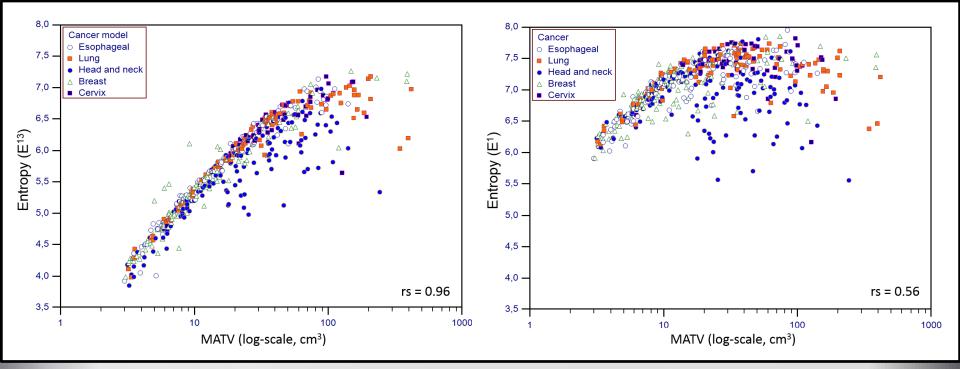


Hatt, et al. ¹⁸F-FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi-cancer site patient cohort. J Nucl Med 2015 Challenges and issues: the volume/intensity confounding issue

Radiomics

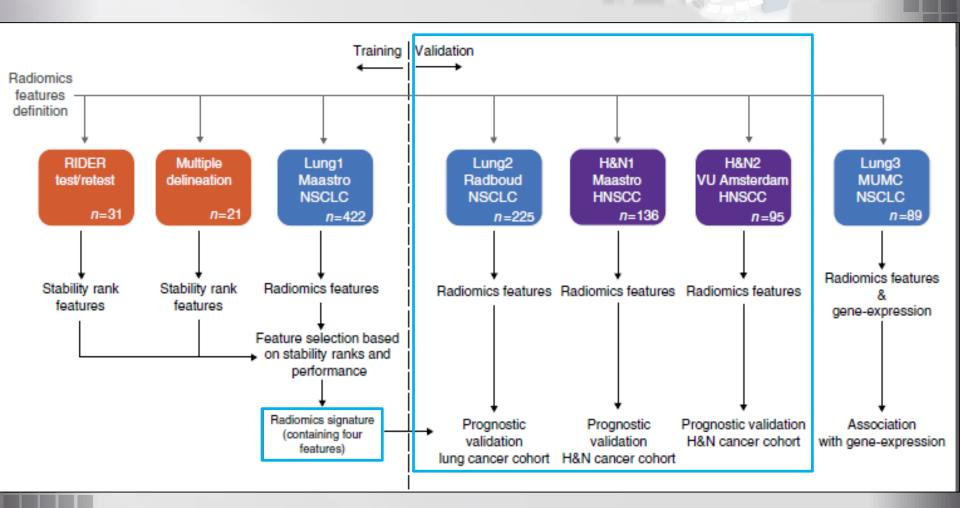
 $256 \rightarrow 64$ grey-levels

13 GLCMs followed by averaging \rightarrow 1 GLCM (13 directions)



Hatt, et al. ¹⁸F-FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi-cancer site patient cohort. J Nucl Med 2015 Radiomics Challenges and issues: the volume/intensity confounding issue

25

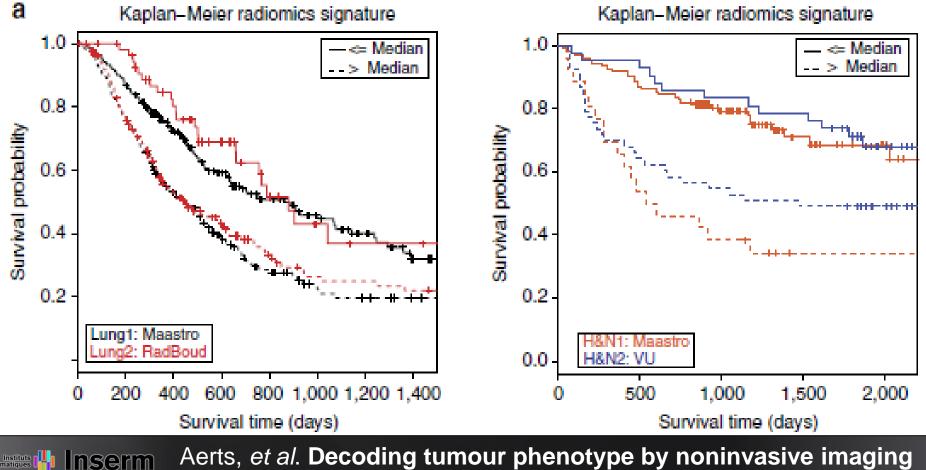


Instituts thématiques Aerts, *et al.* Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. *Nat Commun.* 2014 Radiomics

LOTIM

Challenges and issues: the volume/intensity confounding issue

Intensity	Shape	Textural	Textural (wavelet)	
Energy	Compactness	Grey-level non-uniformity	GLNU in HLH subband	



using a quantitative radiomics approach. Nat Commun. 2014

	Radiomics Challenges and issues: the volume/intensity confounding issue						
Intensity	Shape	Textural	Textural (wavelet)				
Energy	Compactness	Grey-level non-uniformity	GLNU in HLH subband				

27

"(...) shown for the first time the translational capability of radiomics in two cancer types (...) radiomics quantifies a general prognostic cancer phenotype that likely can broadly be applied to other cancer types"

Aerts, *et al.* Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. *Nat Commun.* 2014

Supplemen	tal table (C-i	TNM-	Volume-		
Dataset	Dataset TNM		Radiomics	Radiomics	Radiomics
Lung2	0.60	0.63	0.65	0.64	0.65
H&N1	0.69	0.68	0.69	0.70	0.69
H&N2	0.66	0.65	0.69	0.69	0.68

Spearman rank correlation with volume (N=300 H&N cancer patients): PET: energy: 0.73, compactness: <u>0.98</u>, GLNU: <u>0.99</u>, GLNU_HLH: <u>0.89</u> CT: energy: 0.71, compactness: <u>0.94</u>, GLNU: <u>0.98</u>, GLNU_HLH: <u>0.95</u>

Inserm

e la santé et de la recherche médicale

Aerts, *et al.* **Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach**. *Nat Commun.* 2014

28

Vallières, et al. **Dependency of a validated radiomics signature on tumour volume and potential corrections**. (submitted)

Dependency on reconstruction: PET

Image #	Acq. Mode	Grid-Size	Recon. Alg	Iter. number	Post-filter width (mm)	Legend
1	2D	128×128	OSEM	2	3	2D-128-OSEM2-3mm
2	2D	128×128	OSEM	2	5	2D-128-OSEM2-5mm
3	2D	128×128	OSEM	4	5	2D-128-OSEM4-5mm
4	2D	256×256	OSEM	2	3	2D-256-OSEM2-3mm
5	2D	256×256	OSEM	2	5	2D-256-OSEM2-5mm
6	3D	128×128	ITER	2	3	3D-128-ITER2-3mm
7	3D	128×128	ITER	2	6	3D-128-ITER2-6mm
8	3D	128×128	ITER	4	6	3D-128-ITER4-6mm
9	3D	256×256	ITER	2	3	3D-256-ITER2-3mm
10	3D	256×256	ITER	2	6	3D-256-ITER2-6mm

Acq. Mode = acquisition mode; Recon. Alg = reconstruction algorithm; Iter = iteration.

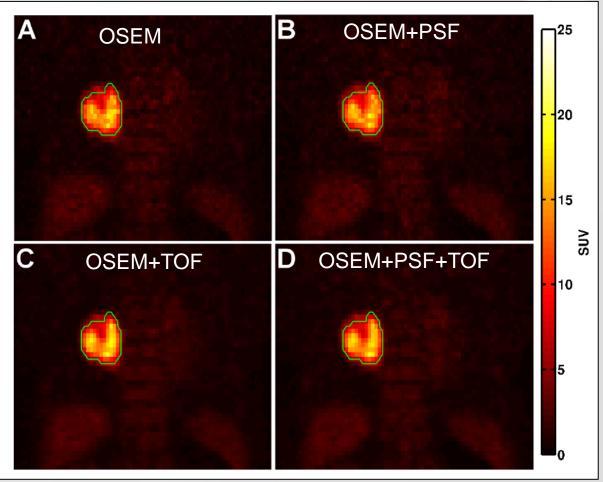
Inserm

de la santé et de la recherche médicale

Gavalis, et al. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters. Acta Oncol. 2010

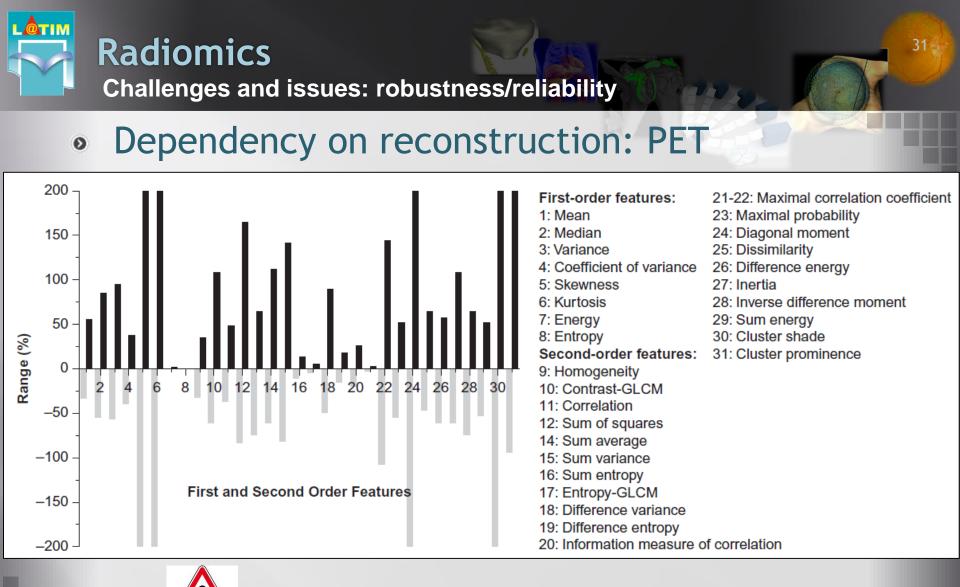
Yan, et al. Impact of Image Reconstruction Settings on Texture Features in 18F-FDG PET. J Nucl Med 2015

Dependency on reconstruction: PET



Gavalis, et al. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters. Acta Oncol. 2010

Yan, et al. Impact of Image Reconstruction Settings on Texture Features in 18F-FDG PET. J Nucl Med 2015

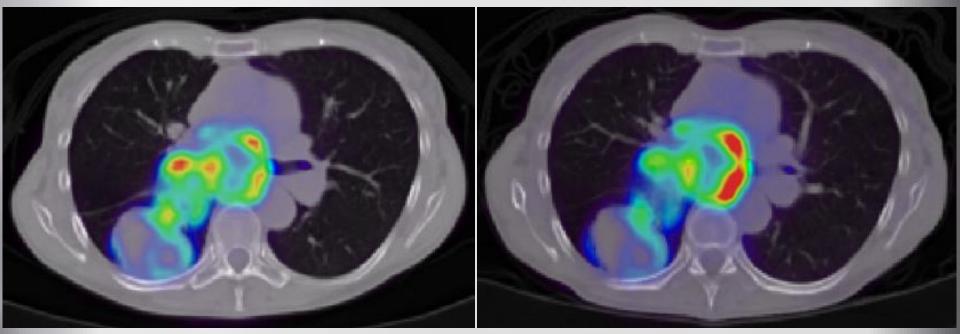


Gavalis, et al. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters. Acta Oncol. 2010

Yan, *et al*. Impact of Image Reconstruction Settings on Texture Features in 18F-FDG PET. J Nucl Med 2015

Radiomics Challenges and issues: robustness/reliability

Test-retest

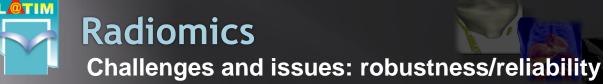


Test PET/CT

Re-test PET/CT

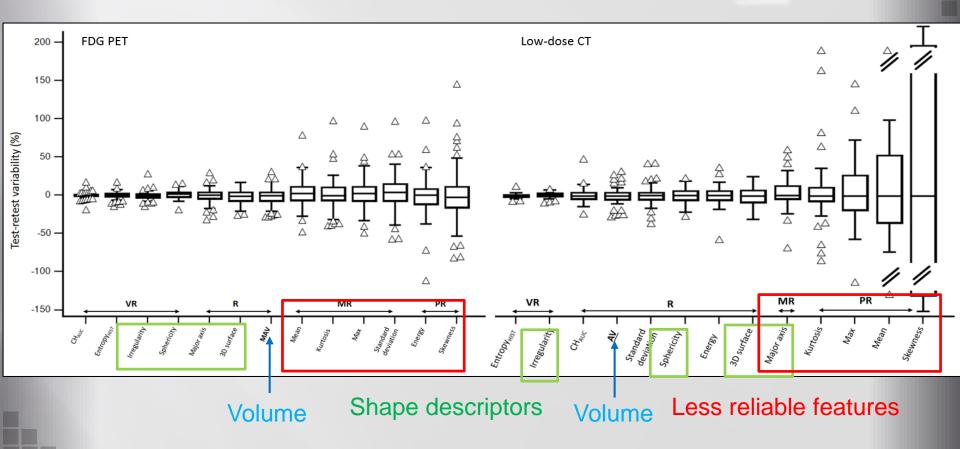
Tixier, *et al.* Reproducibility of tumor uptake heterogeneity characterization through textural feature analysis in 18F-FDG PET. *J Nucl Med.* 2012

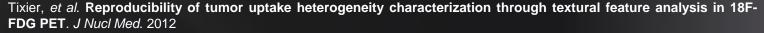
Desseroit, *et al.* Reliability of PET/CT shape and heterogeneity features in functional and morphological components of Non-Small Cell Lung Cancer tumors: a repeatability analysis in a prospective multi-center cohort. *J Nucl Med* 2016



Test-retest

serm



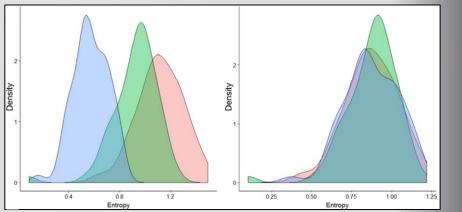


33

Desseroit, et al. Reliability of PET/CT shape and heterogeneity features in functional and morphological components of Non-Small Cell Lung Cancer tumors: a repeatability analysis in a prospective multi-center cohort. *J Nucl Med* 2016

Radiomics Challenges and issues: robustness/reliability

- Identify a compromise between:
 - Non reliable features (small pattern changes lead to large variability of the feature values) and
 - Perfectly « robust » features (always give the same value, unable to capture patterns or changes)
- Solutions for multi-centric data:
 - Use robust features only¹
 - Pre-process images²
 - Post-process features³



1. Upadhaya, et al. Prognosis classification in glioblastoma multiforme using multimodal MRI derived heterogeneity textural features: impact of pre-processing choices. SPIE Medical Imaging 2016

Vallières, et al. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. *Phys Med Biol.* 2018

"3." Orlhac, et al. A post-reconstruction harmonization method for multicenter radiomic studies in PET. J Nucl Med. 2018

Radiomics Challenges and issues: lack of standardisation

- Lack of standardisation and reproducibility of results
 - Different definitions / nomenclature
 - Missing implementation details
 - Different implementations / software (black boxes)

This results in:

nserm

- Sometimes confusing literature
- Meta-analysis impossible (e.g. entropy in paper 1 may not be the same entropy as in paper 2 !)
- Difficult or even impossible to reproduce / confirm the results

Vallières, et al. Radiomics: Responsible Research For Faster

Radiomics Challenges and issues: nomenclature

Nomenclature

<u>Textural Parameters</u> of Tumor Heterogeneity in ¹⁸F-FDG PET/CT for Therapy Response Assessment and Prognosis in Patients with Locally Advanced Rectal Cancer

Ralph A. Bundschuh^{1–3}, Julia Dinges¹, Larissa Neumann¹, Martin Seyfried¹, Norbert Zsótér⁴, Laszló Papp⁴, Robert Rosenberg⁵, Karen Becker⁶, Sabrina T. Astner⁷, Martin Henninger⁸, Ken Herrmann², Sibylle I. Ziegler¹, Markus Schwaiger¹, and Markus Essler^{1,3}

¹Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany;
²Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Würzburg, Wuerzburg, Germany;
³Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Würzburg, Wuerzburg, Germany;
³Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Würzburg, Wuerzburg, Germany;
³Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Würzburg, Wuerzburg, Germany;
³Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Würzburg, Wuerzburg, Germany;
³Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Bonn, Germany;
⁴Mediso Medical Imaging Systems Ltd., Budapest, Hungary;
⁵Chirurgische Klinik, Kantonsspital Baden, Baden, Switzerland;
⁶Institut für Pathologie, Klinikum rechts der Isar der Technischen Universität München, Germany;
⁷Klinik und Poliklinik für Radioonkolgie und Strahlentherapie, Klinikum rechts der Isar der Isar der Technischen Universität München, Munich, Germany; and ⁸Institut für Röntgendiagnostik, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany

Bundschuh, *et al.* **Textural Parameters of Tumor Heterogeneity in** ¹⁸**F-FDG PET/CT for Therapy Response Assessment and Prognosis in Patients with Locally Advanced Rectal Cancer**. *J Nucl Med.* 2014

36

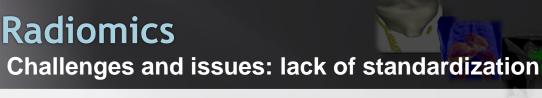
Radiomics Challenges and issues: nomenclature

Nomenclature

Parameter	AUC	95% confidence interval
SUV _{max}	0.52	0.32-0.71
Skewness	0.55	0.33-0.75
Kurtosis	0.61	0.39–0.81
SUV _{mean}	0.68	0.48-0.85
Diameter	0.68	0.48-0.85
COV	0.73	0.53-0.88
Volume	0.75	0.55-0.90
TLG	0.79	0.59–0.92

1st order features ≠ textural features !

Bundschuh, *et al.* **Textural Parameters of Tumor Heterogeneity in** ¹⁸F-FDG PET/CT for **Therapy Response Assessment and Prognosis in Patients with Locally Advanced Rectal Cancer**. *J Nucl Med.* 2014



Imaging biomarkers standardisation initiative 0

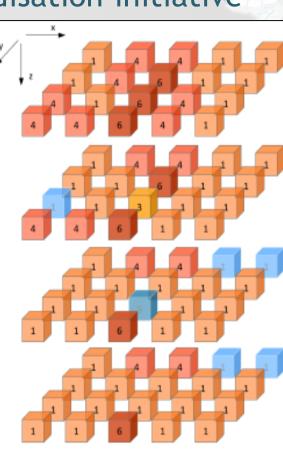
- 06/2016-02/2018
- 20 research groups, 8 countries:
 - USA ۲

- Germany
- The Netherlands
- France ۲
- Canada
- United Kingdom
- Italy 0

Inserm

Institut national de la santé et de la recherche médicale

Switzerland



Digital phantom. Blue voxels lie outside of the region of interest.

(DKFZ)

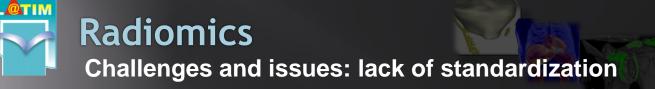
Center

Zürich

Ronald Boellaard

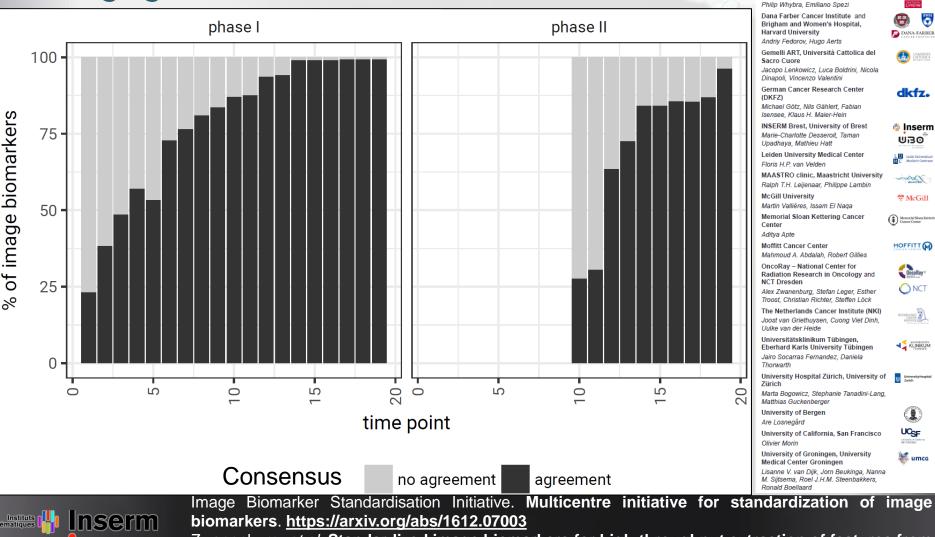
Image Biomarker Standardisation Initiative. Multicentre initiative for standardization of image biomarkers. https://arxiv.org/abs/1612.07003

Zwanenburg, et al. Standardized image biomarkers for high-throughput extraction of features from images, Nature Communications (under review) 2018



Institut national de la santé et de la recherche médicale

Imaging biomarkers standardisation initiative Ø



Zwanenburg, et al. Standardized image biomarkers for high-throughput extraction of features from images, Nature Communications (under review) 2018

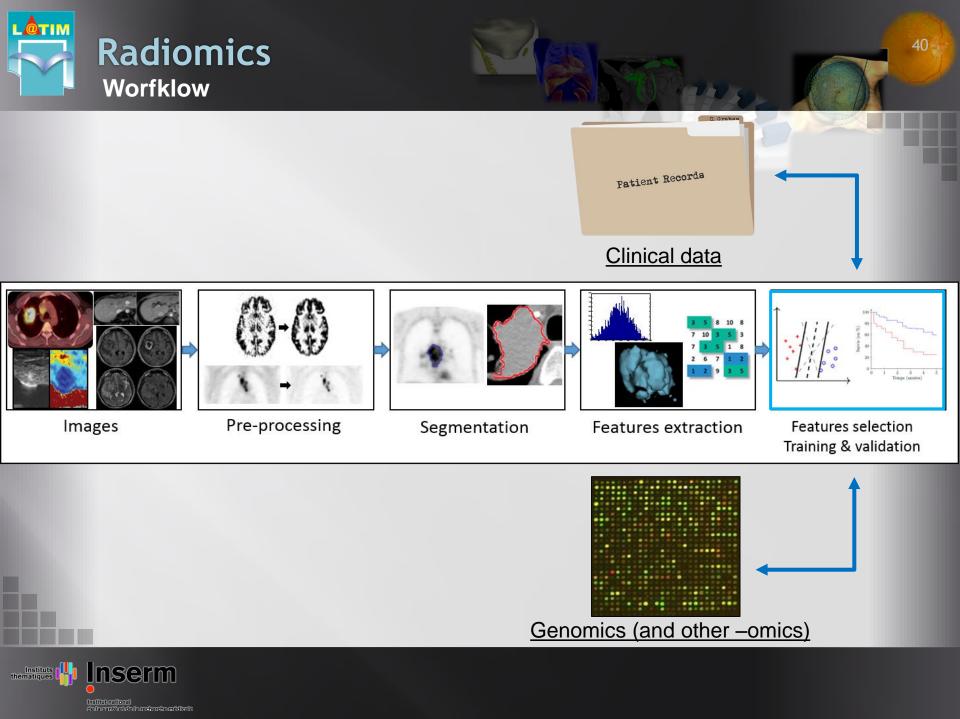
UncoRav

Participants

Alex Zwanenburg

Study leader:

Cardiff University



Radiomics

Challenges and issues: statistical analysis

Inappropriate statistical analysis

Table 1. Statistical characteristics of the selected studies divided in three categories: A) Studies with multiple hypotheses testing only, B) studies employing both multiple hypothesis testing and the optimum cut-off approach and C) studies with multiple hypothesis testing, with or without the optimum cut-off approach, but with validation analysis.

41

Category	Study	Multivariate analysis included volume	Optimum cut-off	Type I error adjustment	Validation dataset	cross correlation reported	Sample size	Hypotheses tested
A	Willaime [19]	Not applicable	No/Mean	No	No	Yes	12	68
	El Naqa [<u>31]</u>	NI*	Not clear	No	No	No	14/9	19
	Tixier [33]	NI	Not clear	No	No	Yes	41	54
	Yip [<u>41]</u>	No	No/Median	Yes [#]	No	No	36	90
В	Miles [30]	No	Yes	No	No	No	48	10
	Goh [<u>32</u>]	No	Yes	No	No	No	39	24
	Cook [29]	No	Yes	No	No	Yes	53	30
	Ganeshan [28]	No	Yes	No	No	Yes	21	15
	Ganeshan [<u>34</u>]	No	Yes	No	No	No	54	8
	Ng [<u>36]</u>	No	Yes	No	No	Yes	55	25
	Zhang [40]	Yes	Yes	No	No	No	72	40
	Cheng [<u>39]</u>	Yes	Yes	No	No	Yes	70	59 [‡]
С	Vaidya [35]	Yes	No	No	LOOCV [†]	No	27	102
	Win [<u>37]</u>	No	Yes	No	Yes	No	66	12
	Ravanelli [<u>38]</u>	No	No/Median	No	LOOCV	No	53	16

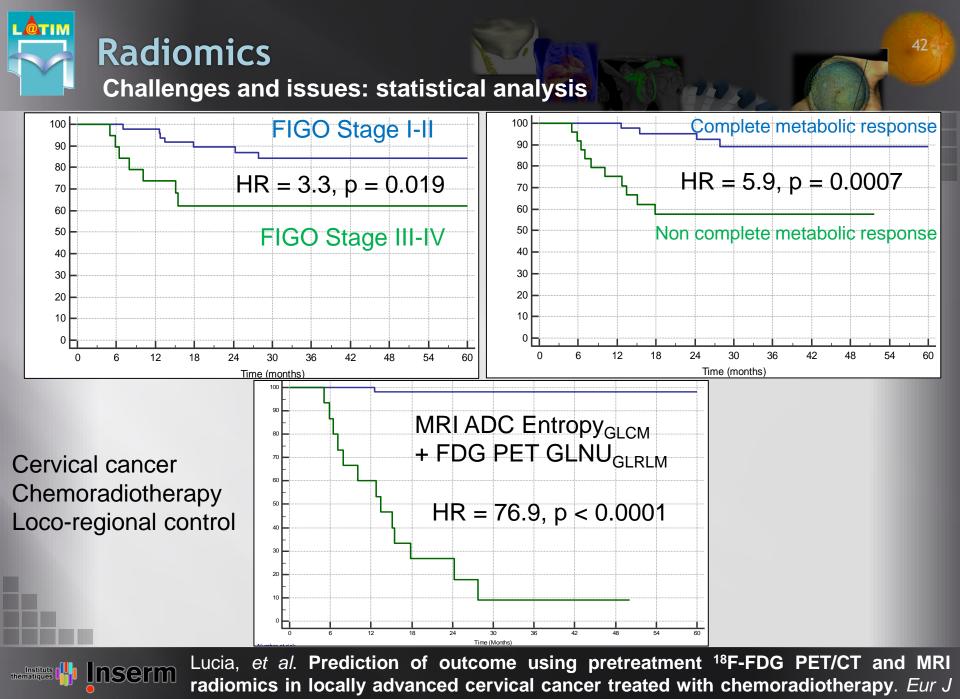
* No information provided

[#]For multiple hypotheses tested

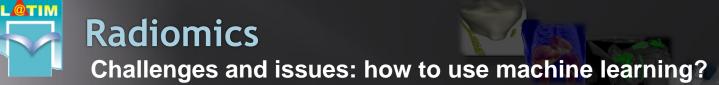
[†]Leave one out cross validation

[‡] Number is a conservative approximation due to the difficulty establishing the exact number of hypotheses tested

Chalkidou, et al. False Discovery Rates in PET and CT Studies with Texture Features: A Systematic Review. PLoS One. 2015



Constitutional Constitution of the Nucl Med Mol Imaging. 2018



Machine learning Ø

nserm

Choosing a classifier/feature selection method?

43

Feature					AL	JC											
Classification method acronym	Classification method name	Selection method acronym	Feature selection method name	Г 0.8	5	0.	6	ך 0.7									
Nnet	Neural network	RELF	Relief		101	0.53	0.53							0.64			RELF
DT	Decision Tree	FSCR	Fisher score		101	0.53	0.53							0.64			FSCR
BST	Boosting	GINI	Gini index	.0		0.53	0.53										GINI
ВҮ	Bayesian	CHSQ	Chi-square score	0		0.53	0.53			2011		0.55					CHSQ
BAG	Bagging	JMI	Joint mutual information		0.55	0.55	0.55			0.67	0.54	0.40					g IMI
RF	Random Forset	CIFE	Conditional infomax feature extraction	0	3.55	0.54			- 949	0.66	0.57	-		4.65		- 96.	
MARS	Multi adaptive regression splines	DISR	Double input symmetric relevance	0	0.51	0.53	0.53	0.66	0.62		0.62	0.64	0.62	1958. 1968		0.64	CIFE DISR MIM MIM
SVM	Support vector machines	MIM	Mutual information maximization			0.56		0.64	0.68		0.77	0.64		0.65			
DA	Discriminant analysis	CMIM	Conditional mutual information maximization		157				0.64		0.55	0.62		100			Feature MIMO
NN	Neirest neighbour	ICAP	Interaction capping														TSCR
GLM	Generalized linear models	TSCR	T-test score		0.53	0.55		0.52	0.68	0.68	0.65	0.69	4.6				MRMR
PLSR	Partial least squares and prinicipal componenet	MRMR	Minimum redundancy maximum	0	0.56	0.5		0.51	0.65		0.63	0.67	0.68	0.00			MIFS
regression		relevance	0						0.68	1.00						WLCX	
_	_	MIFS	Mutual information feature selection		Nnet	DT	BST	ВΥ	BAG	RF	MARS	SVM	DA	NN	GLM	PLSR	
-		WLCX	Wilcoxon		04.221				Class	ificat	≥ ion M		ds		0.0000.01	2002200.0F	

Parmar, et al. Machine Learning methods for Quantitative Radiomic Biomarkers. Sci Rep. 2015 Keger, et al. A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling. Sci Rep 2017 et de la recherche médic

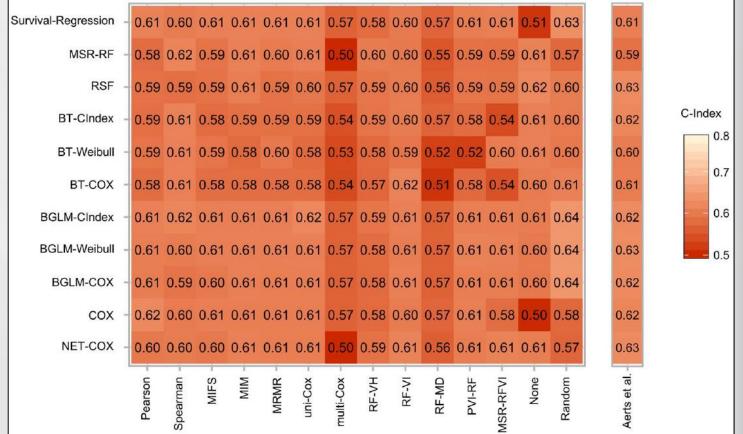
Radiomics Challenges and issues: how to use machine learning?

Machine learning

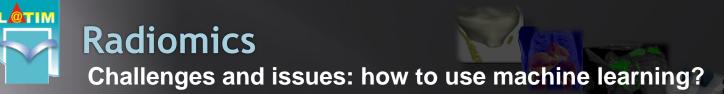
nserm

ella santé et de la recherche médical

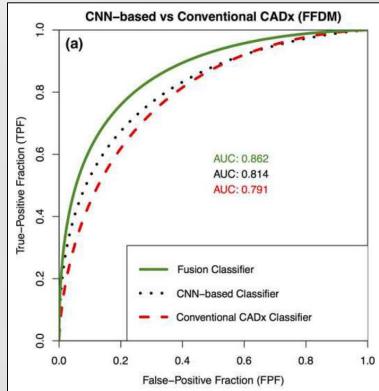
• Choosing a classifier/feature selection method?



Parmar, *et al.* Machine Learning methods for Quantitative Radiomic Biomarkers. *Sci Rep.* 2015 Keger, *et al.* A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling. *Sci Rep* 2017



- Machine learning
 - Choosing a classifier/feature selection method?
 - Potential solution: ensemble methods

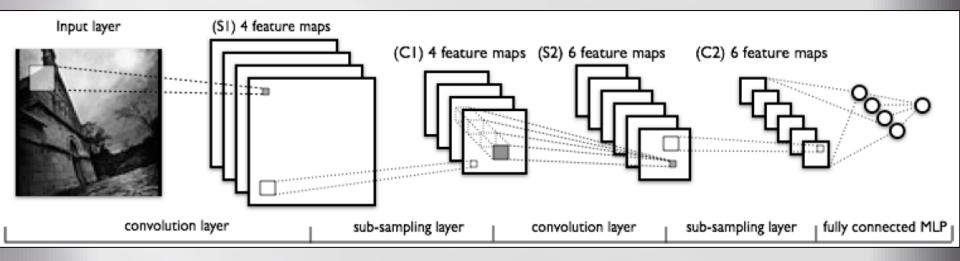


Antropova, *et al.* **A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets**. *Med Phys* 2017

Institut national de la santé et de la recherche médicale

nserm

- Deep learning
 - Convolutional Neural Networks (CNN)



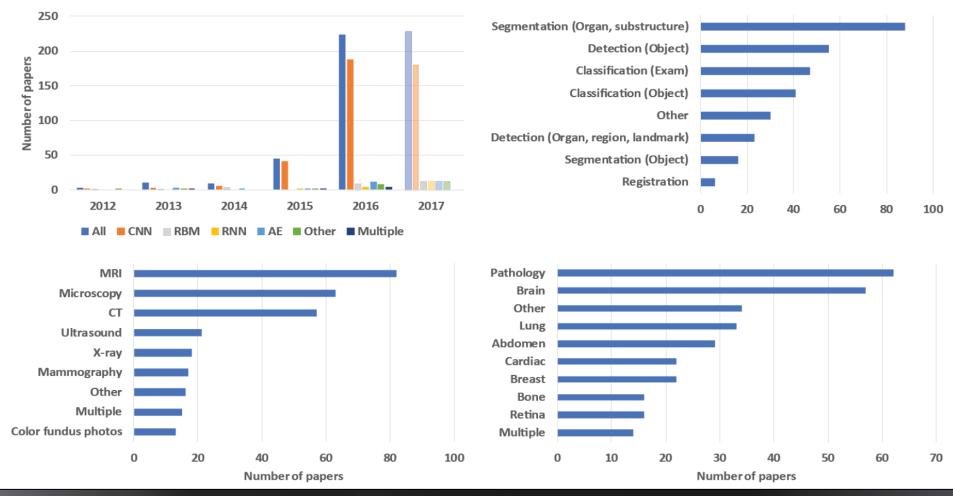
46

- Limitations (a priori)
 - Need (very) large datasets for efficient training
 - Black boxes that do not generate knowledge

Radiomics Perspectives: potential of deep learning?

ГМ

Deep learning in medical imaging

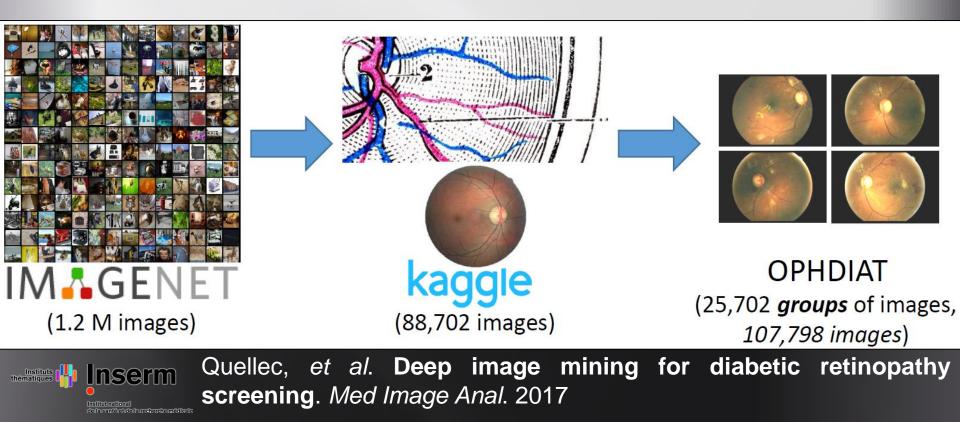


47

Med Image Anal. 2017

Radiomics Perspectives: potential of deep learning?

- Deep learning limitations?
 - Need for large datasets
 - Data augmentation
 - Transfer learning / fine-tuning



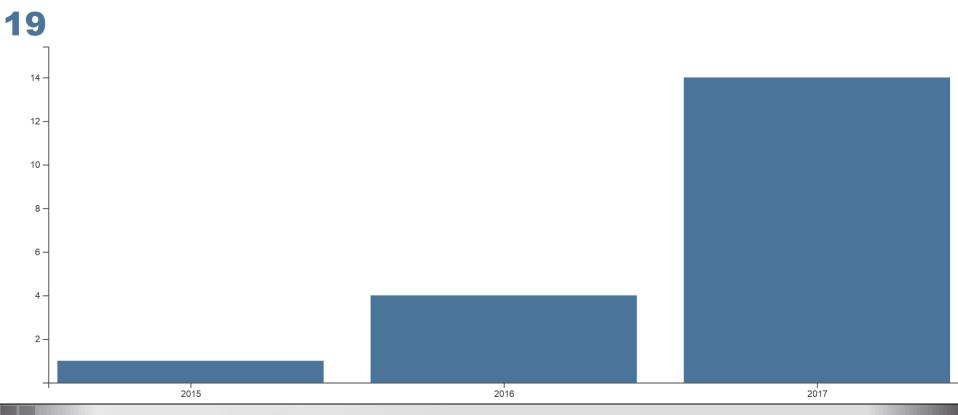
nserm

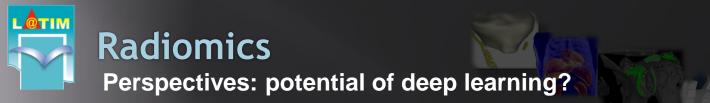
- Deep learning limitations?
 - Need for large datasets
 - Data augmentation
 - Transfer learning / fine-tuning

- Black boxes / knowledge generation
 - Networks visualization
 - Back propagation to exploit networks

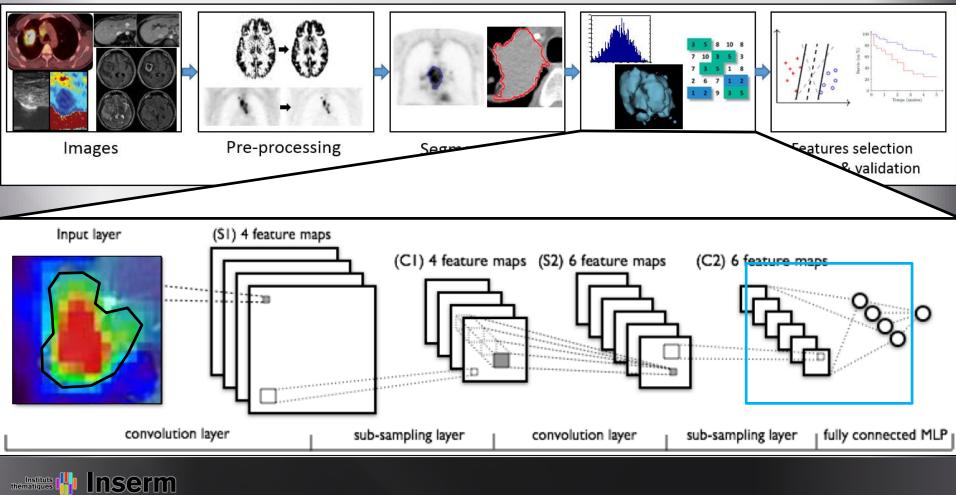
Quellec, et al. Deep image mining for diabetic retinopathy screening. Med Image Anal. 2017

Deep learning / CNN + radiomics



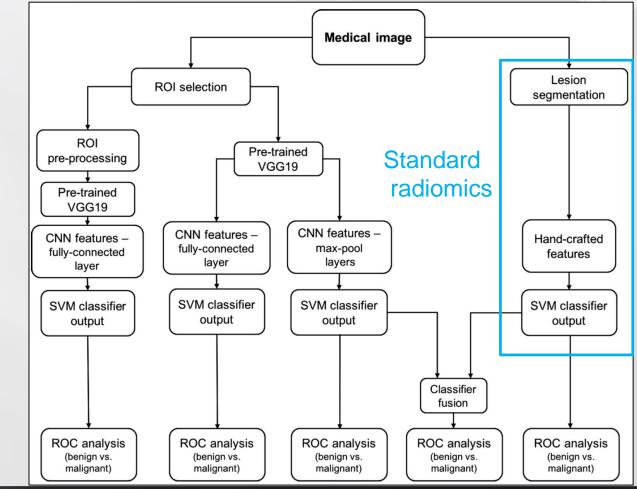


Deep learning / CNN + radiomics Ø



Institut national de la santé et de la recherche médicale

Deep learning / CNN + radiomics

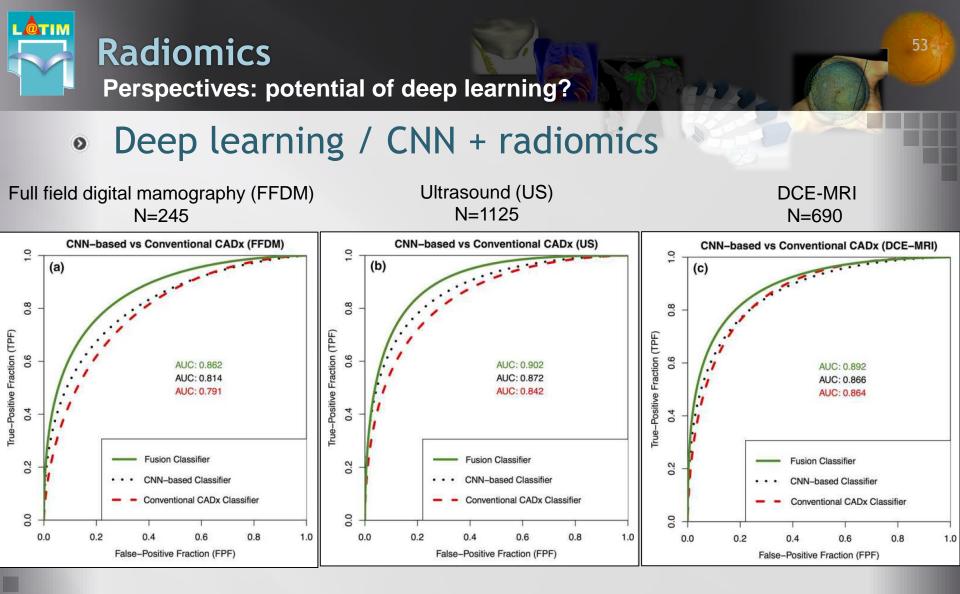


Antropova, *et al.* A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets. *Med Phys* 2017

Institut national de la santé et de la recherche médicale

Inserm

Instituts thématiques

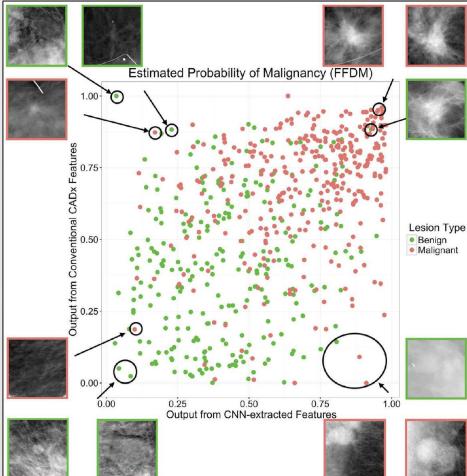


Antropova, *et al.* **A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets**. *Med Phys* 2017

Institut national de la santé et de la recherche médicale

Inserm

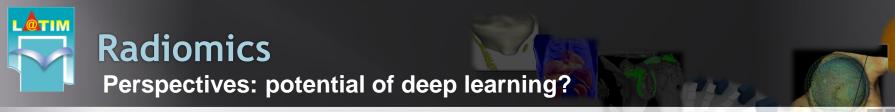
Deep learning / CNN + radiomics



Antropova, *et al.* A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets. *Med Phys* 2017

Institut national de la santé et de la recherche médicale

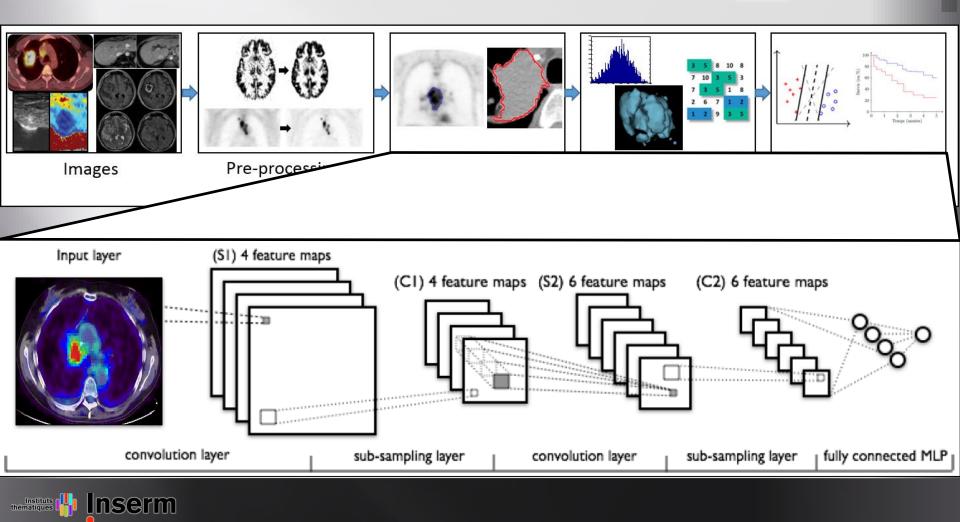
Inserm

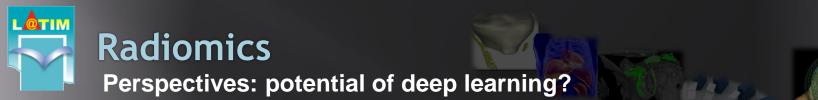


55

Deep learning / CNN + radiomics

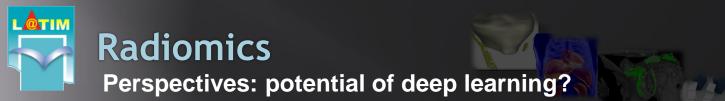
Institut national de la santé et de la recherche médicale





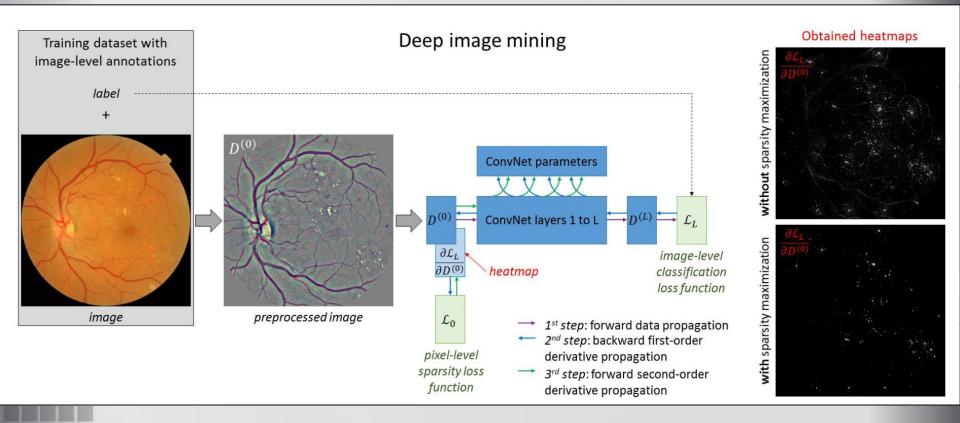
Deep learning / CNN + radiomics

Samek, et al. Evaluating the Visualization of What a Deep Neural Network Has Learned. IEEE Trans Neural Networks and Learning Systems. 2017



- Deep learning / CNN + radiomics Ð
 - « Endpoint-guided » segmentation

Inserm

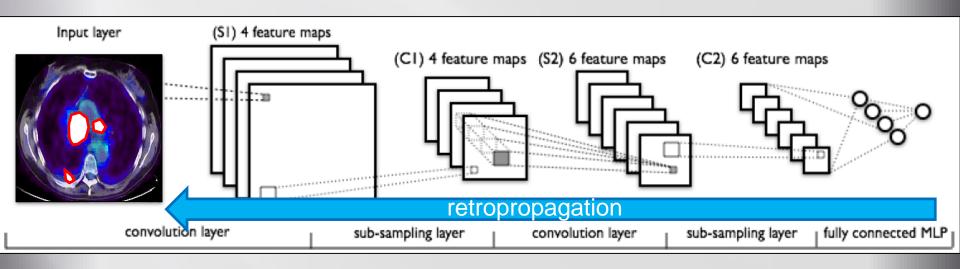


Quellec, et al. Deep image mining for diabetic retinopathy screening. Med Image Anal. 2017 le la santé et de la recherche médical

58

- Deep learning / CNN + radiomics
 - « Endpoint-guided » segmentation

Instituts thématiques



Quellec, et al. Deep image mining for diabetic retinopathy screening. Med Image Anal. 2017

- Radiomics
 - Dynamic field of research
 - Numerous challenges and methodological issues
 - Lack of standardization (workflow, features)
 - Difficult statistical validation
- Potential solutions, perspectives
 - Larger, prospective, multicentric studies
 - Use robust machine learning methods (deep learning?)
 - Standardization of radiomics (ongoing)
 - Responsible research (share methods & data)

Thanks for your attention

