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2Introduction
Radiomics: definition

 Radiomics is the high-throughput extraction of quantitative features from

medical images1

 The approach considers « pictures » as « minable » data2

 Radiomics aims at building models that are predictive of some patient 

outcome (e.g. survival, response to therapy…) or characteristic (tumor type, 

phenotype, genotype…)

1. Lambin, et al. Radiomics: extracting more information from medical images using advanced

feature analysis. Eur J Cancer 2012

2. Gillies, et al. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016
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Radiomics: exponential growth

Radiomics: ~500 publications

Source: web of science
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History of radiomics

Gillies, et al. The biology underlying molecular imaging in oncology: from

genome to anatome and back again. Clin Radiol 2010

The terms “radiomics” and “radiogenomics” were first employed in 2010 to 

describe how imaging features can reflect gene expression:
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Radiomics: is this really new?

The term radiomics has become popular since 2012

Textural features (a large chunck of radiomics features) 

exist since the 70’s and have been used in medical

imaging since the 90’s [1-3]

Numerous publications before 2012 (quantification) 

could be categorized as « radiomics studies »

Some « new » elements of radiomics:

Larger number of features (>hundreds) / « high-

throughput »

Relying on machine learning (selection/classifier)

Link with biology (including genetics)

1. Schad, et al. MR tissue characterization of intracranial tumors by means of texture analysis. Magn Reson Imaging 1993

2. Mir, et al. Texture analysis of CT-images for early detection of liver malignancy. Biomed Sci Instrum. 1995

3. El Naqa, et al. Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern

Recognit. 2009
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Radiomics: rationale

Introduction

Macroscopic/microscopic heterogenity

Tumours are heterogeneous entities [1]

Genetic, cellular, tissular

Hypothesis: caracteristics in images (macro scale) reflect at least partly

caracteristics in smaller scales (including genetic) [2]

1. Gerlinger, et al. Intratumor heterogeneity and branched evolution revealed by multiregion

sequencing. N Engl J Med. 2012

2. Segal, et al. Decoding global gene expression programs in liver cancer by noninvasive imaging.

Nat Biotechnol. 2007

Histology Biomarkers Proteomics Genomics
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7Introduction
Early works (example)

Segal, et al. Decoding global gene expression programs in liver

cancer by noninvasive imaging. Nat Biotechnol. 2007



8Radiomics
Standard worfklow

Genomics (and other –omics)

Clinical data



9Radiomics
Features

« Usual » radiomics:

Intensity-based (e.g. histogram)

Shape descriptors (e.g. sphericity)

Texture analysis 2nd or higher order (e.g. GLCM)

Lambin, et al. Radiomics: extracting more information from medical

images using advanced feature analysis. Eur J Cancer 2012



10Radiomics
Features

Less frequently used / more recent:

Fractal analysis1

Filter-based (e.g. Law’s, Riesz2 …)

Others (metabolic gradient3, CoLIAGE4 …)

1. Michallek, et al. Fractal analysis in radiological and nuclear medicine perfusion imaging: a systematic review. Eur Radiol. 2014

2. Cirujeda, et al. A 3-D Riesz-Covariance Texture Model for Prediction of Nodule Recurrence in Lung CT. IEEE Trans Med Imaging. 2016

3. Wolsztynski, et al. Localized metabolic gradient as an independent prognostic variable from FDG-PET in sarcoma. SNMMI. 2017

4. Prasanna, et al. Co-occurrence of Local Anisotropic Gradient Orientations (CoLlAGe): A new radiomics descriptor. Sci Rep. 2016



11Radiomics
Standard worfklow

Genomics (and other –omics)

Clinical data
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Segmentation step: how critical for radiomics?

Radiomics
Segmentation: impact?

Hatt, al. Tumour functional sphericity from PET images: prognostic value in NSCLC

and impact of delineation method. Eur J Nucl Med Mol Imaging 2018

87 NSCLC patients

(stage II-III)

ACO FLAB

GARAC T40% T50%
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Segmentation step: how critical for radiomics?

Potential solutions:

Use ensemble / consensus methods (e.g. STAPLE)1

Radiomics
Segmentation: impact?

1. Hatt, et al. The first MICCAI challenge on PET tumor segmentation. Med Image Anal. 2018

2. Berthon, et al. ATLAAS: an automatic decision tree-based learning algorithm for advanced

image segmentation in positron emission tomography. Phys Med Biol 2016

T40 FLAB CNN STAPLE 

consensus
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Segmentation step: how critical for radiomics?

Potential solutions:

Use ensemble / consensus methods (e.g. STAPLE)1

Use machine learning models that select the best 

method for a given configuration (e.g. ATLAAS)2

Radiomics
Segmentation: impact?

1. Hatt, et al. The first MICCAI challenge on PET tumor segmentation. Med Image Anal. 2018

2. Berthon, et al. ATLAAS: an automatic decision tree-based learning algorithm for advanced

image segmentation in positron emission tomography. Phys Med Biol 2016



15Radiomics
Worfklow

Genomics (and other –omics)

Clinical data
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Workflow complexity

Radiomics

PET image

« Let’s compute some textural features!» Useful

quantification of 

heterogeneity

Challenges and issues: the complexity of textural features

Hatt, et al. Characterization of PET/CT images using texture analysis: the

past, the present… any future? Eur J Nucl Med Mol Imaging 2017
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Workflow complexity

Radiomics

PET image

« Let’s compute some textural features!» Useful

quantification of 

heterogeneity

Challenges and issues: the complexity of textural features

Hatt, et al. Characterization of PET/CT images using texture analysis: the

past, the present… any future? Eur J Nucl Med Mol Imaging 2017



18Radiomics
Challenges and issues: the volume/intensity confounding issue

Tixier, et al. Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images

predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med 2011

Hatt, et al. Baseline ¹⁸F-FDG PET image-derived parameters for therapy response prediction in oesophageal

cancer. Eur J Nucl Med Mol Imaging 2011

High 

correlation with

volume?

FDG PET, esophageal cancer patients

N=41 N=50



19Radiomics
Challenges and issues: the volume/intensity confounding issue

Hatt, et al. Robustness of intratumour ¹⁸F-FDG PET uptake heterogeneity

quantification for therapy response prediction in oesophageal carcinoma. Eur J Nucl

Med Mol Imaging 2013



20Radiomics
Challenges and issues: the volume/intensity confounding issue

Hatt, et al. Robustness of intratumour ¹⁸F-FDG PET uptake heterogeneity

quantification for therapy response prediction in oesophageal carcinoma. Eur J Nucl

Med Mol Imaging 2013



21Radiomics
Challenges and issues: the volume/intensity confounding issue

Brooks, et al. The effect of small tumor volumes on studies of

intratumoral heterogeneity of tracer uptake. J Nucl Med 2014



22Radiomics
Challenges and issues: the volume/intensity confounding issue

Brooks, et al. The effect of small tumor volumes on studies of

intratumoral heterogeneity of tracer uptake. J Nucl Med 2014

- A single texture: entropyGLCM

- Calculated following one single workflow:

- Linear discretization into 152 bins

- 2 GLCM matrices for 2 directions (vertical+horizontal) followed by averaging
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Challenges and issues: the volume/intensity confounding issue

Hatt, et al. 18F-FDG PET uptake characterization through texture analysis:

investigating the complementary nature of heterogeneity and functional tumor

volume in a multi-cancer site patient cohort. J Nucl Med 2015

rs = 0.98

256 → 64 grey-levels



24Radiomics
Challenges and issues: the volume/intensity confounding issue

Hatt, et al. 18F-FDG PET uptake characterization through texture analysis:

investigating the complementary nature of heterogeneity and functional tumor

volume in a multi-cancer site patient cohort. J Nucl Med 2015

256 → 64 grey-levels
13 GLCMs followed by averaging

→ 1 GLCM (13 directions)
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Challenges and issues: the volume/intensity confounding issue

Aerts, et al. Decoding tumour phenotype by noninvasive imaging 

using a quantitative radiomics approach. Nat Commun. 2014



“(…) shown for the first time the translational capability of 

radiomics in two cancer types (…) radiomics quantifies a 

general prognostic cancer phenotype that likely can 

broadly be applied to other cancer types”

26Radiomics
Challenges and issues: the volume/intensity confounding issue

Aerts, et al. Decoding tumour phenotype by noninvasive imaging 

using a quantitative radiomics approach. Nat Commun. 2014

Intensity Shape Textural Textural (wavelet)

Energy Compactness Grey-level non-uniformity GLNU in HLH subband
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27Radiomics
Challenges and issues: the volume/intensity confounding issue

Aerts, et al. Decoding tumour phenotype by noninvasive imaging 

using a quantitative radiomics approach. Nat Commun. 2014

Intensity Shape Textural Textural (wavelet)

Energy Compactness Grey-level non-uniformity GLNU in HLH subband



28Radiomics
Challenges and issues: the volume/intensity confounding issue

Aerts, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. 

Nat Commun. 2014

Vallières, et al. Dependency of a validated radiomics signature on tumour volume and potential corrections. 

(submitted)

Supplemental table (C-index)

Spearman rank correlation with volume (N=300 H&N cancer patients):
PET: energy: 0.73, compactness: 0.98, GLNU: 0.99, GLNU_HLH: 0.89
CT: energy: 0.71, compactness: 0.94, GLNU: 0.98, GLNU_HLH: 0.95
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Dependency on reconstruction: PET

Radiomics
Challenges and issues: robustness/reliability

Gavalis, et al. Variability of textural features in FDG PET images due to different acquisition modes

and reconstruction parameters. Acta Oncol. 2010

Yan, et al. Impact of Image Reconstruction Settings on Texture Features in 18F-FDG PET. J Nucl

Med 2015
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Dependency on reconstruction: PET

Radiomics
Challenges and issues: robustness/reliability

Gavalis, et al. Variability of textural features in FDG PET images due to different acquisition modes

and reconstruction parameters. Acta Oncol. 2010

Yan, et al. Impact of Image Reconstruction Settings on Texture Features in 18F-FDG PET. J Nucl

Med 2015

OSEM OSEM+PSF

OSEM+TOF OSEM+PSF+TOF
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Dependency on reconstruction: PET

Radiomics

Gavalis, et al. Variability of textural features in FDG PET images due to different acquisition modes

and reconstruction parameters. Acta Oncol. 2010

Yan, et al. Impact of Image Reconstruction Settings on Texture Features in 18F-FDG PET. J Nucl

Med 2015

Multicentric data !

Challenges and issues: robustness/reliability
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Test-retest

Radiomics
Challenges and issues: robustness/reliability

Tixier, et al. Reproducibility of tumor uptake heterogeneity characterization through textural feature analysis in 18F-

FDG PET. J Nucl Med. 2012

Desseroit, et al. Reliability of PET/CT shape and heterogeneity features in functional and morphological components of

Non-Small Cell Lung Cancer tumors: a repeatability analysis in a prospective multi-center cohort. J Nucl Med 2016

Test PET/CT Re-test PET/CT
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Test-retest

Radiomics
Challenges and issues: robustness/reliability

Tixier, et al. Reproducibility of tumor uptake heterogeneity characterization through textural feature analysis in 18F-

FDG PET. J Nucl Med. 2012

Desseroit, et al. Reliability of PET/CT shape and heterogeneity features in functional and morphological components of

Non-Small Cell Lung Cancer tumors: a repeatability analysis in a prospective multi-center cohort. J Nucl Med 2016

Test PET/CT Re-test PET/CT

Volume VolumeShape descriptors Less reliable features
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Identify a compromise between:

Non reliable features (small pattern changes lead to 

large variability of the feature values)

and

Perfectly « robust » features (always give the same

value, unable to capture patterns or changes)

Solutions for multi-centric data:

Use robust features only1

Pre-process images2

Post-process features3

Radiomics

1. Upadhaya, et al. Prognosis classification in glioblastoma multiforme using multimodal MRI derived heterogeneity textural features:

impact of pre-processing choices. SPIE Medical Imaging 2016

2. Vallières, et al. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue

sarcomas of the extremities. Phys Med Biol. 2018

3. Orlhac, et al. A post-reconstruction harmonization method for multicenter radiomic studies in PET. J Nucl Med. 2018

Challenges and issues: robustness/reliability
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Lack of standardisation and reproducibility of results

Different definitions / nomenclature

Missing implementation details

Different implementations / software (black boxes) 

This results in:

Sometimes confusing literature

Meta-analysis impossible (e.g. entropy in paper 1 may not be

the same entropy as in paper 2 !)

Difficult or even impossible to reproduce / confirm the results

Radiomics
Challenges and issues: lack of standardisation

Vallières, et al. Radiomics: Responsible Research For Faster

Clinical Translation. J Nucl Med 2018
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Challenges and issues: nomenclature

Radiomics

Bundschuh, et al. Textural Parameters of Tumor Heterogeneity in ¹⁸F-FDG PET/CT for

Therapy Response Assessment and Prognosis in Patients with Locally Advanced

Rectal Cancer. J Nucl Med. 2014

Nomenclature
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Challenges and issues: nomenclature

Radiomics

Bundschuh, et al. Textural Parameters of Tumor Heterogeneity in ¹⁸F-FDG PET/CT for

Therapy Response Assessment and Prognosis in Patients with Locally Advanced

Rectal Cancer. J Nucl Med. 2014

Nomenclature

1st order features ≠ textural features !
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Image Biomarker Standardisation Initiative. Multicentre initiative for standardization of image

biomarkers. https://arxiv.org/abs/1612.07003

Zwanenburg, et al. Standardized image biomarkers for high-throughput extraction of features from

images, Nature Communications (under review) 2018

Imaging biomarkers standardisation initiative
06/2016-02/2018

20 research groups, 8 countries:

USA

Germany

The Netherlands

France

Canada

United Kingdom

Italy

Switzerland

Challenges and issues: lack of standardization

Radiomics
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Image Biomarker Standardisation Initiative. Multicentre initiative for standardization of image

biomarkers. https://arxiv.org/abs/1612.07003

Zwanenburg, et al. Standardized image biomarkers for high-throughput extraction of features from

images, Nature Communications (under review) 2018

Imaging biomarkers standardisation initiative
06/2016-02/2018

20 research groups, 8 countries:

USA

Germany

The Netherlands

France

Canada

United Kingdom

Italy

Switzerland

Challenges and issues: lack of standardization

Radiomics

Consensus



40Radiomics
Worfklow

Genomics (and other –omics)

Clinical data
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Inappropriate statistical analysis

Radiomics
Challenges and issues: statistical analysis

Chalkidou, et al. False Discovery Rates in PET and CT Studies with Texture

Features: A Systematic Review. PLoS One. 2015
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42Radiomics
Challenges and issues: statistical analysis

Lucia, et al. Prediction of outcome using pretreatment 18F-FDG PET/CT and MRI

radiomics in locally advanced cervical cancer treated with chemoradiotherapy. Eur J

Nucl Med Mol Imaging. 2018

FIGO Stage I-II

FIGO Stage III-IV

HR = 3.3, p = 0.019

Complete metabolic response

HR = 5.9, p = 0.0007

Non complete metabolic response

HR = 76.9, p < 0.0001

MRI ADC EntropyGLCM

+ FDG PET GLNUGLRLMCervical cancer

Chemoradiotherapy

Loco-regional control
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Machine learning

Choosing a classifier/feature selection method?

Radiomics
Challenges and issues: how to use machine learning?

Parmar, et al. Machine Learning methods for Quantitative Radiomic Biomarkers. Sci Rep. 2015

Keger, et al. A comparative study of machine learning methods for time-to-event survival data for

radiomics risk modelling. Sci Rep 2017
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Machine learning

Choosing a classifier/feature selection method?

Radiomics
Challenges and issues: how to use machine learning?

Parmar, et al. Machine Learning methods for Quantitative Radiomic Biomarkers. Sci Rep. 2015

Keger, et al. A comparative study of machine learning methods for time-to-event survival data for

radiomics risk modelling. Sci Rep 2017
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Machine learning

Choosing a classifier/feature selection method?

Potential solution: ensemble methods

Radiomics
Challenges and issues: how to use machine learning?

Antropova, et al. A deep feature fusion methodology for breast cancer diagnosis

demonstrated on three imaging modality datasets. Med Phys 2017
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Deep learning

Convolutional Neural Networks (CNN)

Limitations (a priori)

Need (very) large datasets for efficient training

Black boxes that do not generate knowledge

Radiomics
Perspectives: potential of deep learning?
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Deep learning in medical imaging

Radiomics
Perspectives: potential of deep learning?

Litjens, et al. a survey on deep learning in medical image analysis.

Med Image Anal. 2017
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Deep learning limitations?

Need for large datasets

Data augmentation

Transfer learning / fine-tuning

Black boxes / knowledge generation

Networks visualization

Back propagation to exploit networks

Radiomics
Perspectives: potential of deep learning?

Quellec, et al. Deep image mining for diabetic retinopathy

screening. Med Image Anal. 2017
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Deep learning limitations?

Need for large datasets

Data augmentation

Transfer learning / fine-tuning

Black boxes / knowledge generation

Networks visualization

Back propagation to exploit networks

Radiomics
Perspectives: potential of deep learning?

Quellec, et al. Deep image mining for diabetic retinopathy

screening. Med Image Anal. 2017
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Deep learning / CNN + radiomics

Radiomics
Perspectives: potential of deep learning?

Source: web of science
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Deep learning / CNN + radiomics

Radiomics
Perspectives: potential of deep learning?
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Deep learning / CNN + radiomics

Radiomics
Perspectives: potential of deep learning?

Antropova, et al. A deep feature fusion methodology for breast cancer diagnosis

demonstrated on three imaging modality datasets. Med Phys 2017

Standard

radiomics
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Deep learning / CNN + radiomics

Radiomics
Perspectives: potential of deep learning?

Antropova, et al. A deep feature fusion methodology for breast cancer diagnosis

demonstrated on three imaging modality datasets. Med Phys 2017

Full field digital mamography (FFDM)

N=245

Ultrasound (US)

N=1125
DCE-MRI

N=690 
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Deep learning / CNN + radiomics

Radiomics
Perspectives: potential of deep learning?

Antropova, et al. A deep feature fusion methodology for breast cancer diagnosis

demonstrated on three imaging modality datasets. Med Phys 2017
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Deep learning / CNN + radiomics

Radiomics
Perspectives: potential of deep learning?
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Deep learning / CNN + radiomics

Radiomics
Perspectives: potential of deep learning?

Samek, et al. Evaluating the Visualization of What a Deep Neural Network

Has Learned. IEEE Trans Neural Networks and Learning Systems. 2017
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Deep learning / CNN + radiomics

« Endpoint-guided » segmentation

Radiomics
Perspectives: potential of deep learning?

Quellec, et al. Deep image mining for diabetic retinopathy

screening. Med Image Anal. 2017

retropropagation
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Deep learning / CNN + radiomics

« Endpoint-guided » segmentation

Radiomics
Perspectives: potential of deep learning?

Quellec, et al. Deep image mining for diabetic retinopathy

screening. Med Image Anal. 2017

retropropagation
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Radiomics

Dynamic field of research

Numerous challenges and methodological issues

Lack of standardization (workflow, features)

Difficult statistical validation

Potential solutions, perspectives

Larger, prospective, multicentric studies

Use robust machine learning methods (deep learning?)

Standardization of radiomics (ongoing)

Responsible research (share methods & data)

Conclusions



Thanks for your attention 60


