

Workshop « Avancées récentes en analyse d'images médicales multi-modales » 22-23 mars 2018 Orsay (France)

Workshop WP4

<u>« Intérêt de l'analyse des imageries in vivo et post mortem</u> <u>du cerveau en recherche préclinique»</u>

Thierry DELZESCAUX

Molecular imaging research center (MIRCen) UMR CNRS-CEA 9199

Institut François Jacob, CEA, Fontenay-aux-Roses, France

<u> Thierry.Delzescaux@cea.fr</u>

Molecular imaging research center

Laboratoire des Maladies Neurodégénératives

Une plateforme dédiée à la recherche translationnelle

Laboratoire des Maladies Neurodégénératives UMR 9199

- Therapies
- Brain Imaging

Translational research

Cerebral imaging in rodents. MIRCen facilities

Post mortem imaging In vivo imaging Function Function Anatomy Anatomy Autoradio-PET **Blockface** Histology **MRI** FDG, etc... 7T Cresyl, Nissl graphy photographs 7T - 11,7T µ-PET (rodent) Cryostat 3D 3D/2D 2D Dimension 3D 2DImages

In vivo / post mortem imaging techniques

Advantages / Disadvantages

In vivo imaging

÷

- ✓ Longitudinal studies
- ✓ 3D imaging
- \checkmark Fast acquisition time

✓ Technical limitations

- \checkmark Difficult to use
- ✓ Recent
- \checkmark High cost

Post mortem imaging

- ✓ High spatial resolution
- ✓ Easy to use
- ✓ Low cost
- \checkmark Variety of stainings
- ✓ Single observation
- ✓ 2D imaging
- ✓ Tedious

Background: research / applications

Merging of information acquired in vivo and post mortem:

- at microscopic and macroscopic level,
- anatomy and function.
- Quantitative validation of PET (instrumentation) Evaluation of PET abilities (follow-up)

3-D post mortem reconstruction

Cryostat

Cutting process

"Banana effect"

First prototype developed

3-D photographic volume

Coronal view

3D photographic modality

Setup

New prototype:

Improved performances

Tissue section digitization

Optimized acquisition of the data

Histological staining

Flatbed scanner

Anatomical information

Histological stained sections (cresyl violet)

"Column" acquisition Several dozens of sections can be digitized at once

Automated extraction and stacking of the sections

Applications in Alzheimer's disease

- 1) Metabolism changes
- 2) Amyloid load assessment
- 3) In vivo / post mortem co-registration
- 4) Future research

1) Metabolism changes

1) Metabolism changes in Alzheimer's disease

- Material:
- APP-PS1 (n=3),
- PS1 control (n=4).
- Hemibrain studied

- Reconstruction strategy:
- Use of reference volume,
- Multimodality 3-D consistency,
- Photography : reconstruction + spatial normalisation.

Photographic volume

Histological volume

Autoradiographical volume

Construction of a digital atlas of mouse brain

Analysis of PM dataset using a 3D digital atlas

Détection automatique et sans *a priori*, à l'échelle des voxels, de différences significatives d'intensité entre deux groupes d'images

Technique principalement développée et utilisée chez l'Homme en imagerie in vivo

Voxel-wise metabolism analysis [1/2]

Areas of decreased glucose uptake in APP/PS1 relative to PS1 mice

Areas of increased glucose uptake in APP/PS1 relative to PS1 mice

• Synthesis of glucose changes detected:

- 𝔄 : cortex Cg, hippocampus Rad and Mol, thalamus Th,
- 🖉 : hippocampus CA1, CA3, Pir cortex,

• Limitations:

- Huge amount of data,
- Reconstruction step,
- A single measurement.

• Interests:

- Without anatomical a priori,
- Possibility to perform exploratory studies (*identification of structures / sub-structures involved*),
- Anatomo-functional data, high resolution (~20-40 μ m).

Voxel-wise metabolism analysis [2/2]

• Surface rendering

⇒ Improve our understanding of **pathophysiological processes**

⇒Possibility to quantitatively evaluate **drug efficacy** / **new therapeutic strategies**

 ⇒ Possibility to apply this methodology to **other species** (mouse, rat, microcebe, etc.)

Dubois et al, NeuroImage, 2010

Detection of metabolic changes in AD mouse model

- First group studies using 3D histology were performed:
 - 1) in rodents (rats, mouse),
 - 2) on autoradiographic data.

Autoradiographic section

Continuous / quantitative information / mesoscopic scale / 3D reconstruction

Sparse / qualitative information / meso-micro scale / 3D reconstruction

2) Amyloid load assessment

High throughput post mortem studies

- 1) Histology production
- 2) Digitization process
- 3) Hardware facilities

Neuropathology image segmentation

Ontology-based analysis (1/3)

Ontology-based analysis (2/3)

Ontology-based analysis (3/3)

3D analysis – Amyloid load assessement

Violet de crésyl

Plaques amyloïdes

Vandenberghe *et al.*, Sci Rep, 2016

6E10 IHC

Atlas cerveau souris

Carte quantitative

3) In vivo – post mortem

Co-registration

M. Dhenain team (post mortem MRI)

C07

In vivo / post mortem 3D co-registration

+ MRI

BHE leakage + MRI

In vivo / post mortem 3D co-registration

Coronal Axial Sagittal Amyloid density

> Vandenberghe et al., Sci Rep, 2016 Santin et al., Front Aging Neuro, 2016

3D view

4) Future research

Microscopic level

3D whole-brain histopathology

Images	Resolution (xyz, μm)	Approximate number of voxels	Approximate file size (gygabytes)
7T mouse brain MRI scan	30 30 30	10 ⁷	0.02
Block-face photography volume (100 sections)	30 30 120	10 ⁷	0.02
Mesoscopic IHC volume (100 sections)	5 5 120	10 ⁸	1
Microscopic IHC volume (100 sections)	0.20 0.20 120	10 ¹¹	1000

Multiple markers 3D histopathology [1/3]

Deriving mesoscopic quantitative information from high-resolution histology images.

Information acquired at cellular level

Analysis

Multiple markers 3D histopathology [2/3]

Multiple markers 3D histopathology [3/3]

Bridging the gap between microscopic and macroscopic scale

3D histology

Lein et al, Nature 2007

Yang et al, Frontiers in Neuroanatomy, 2013

Dauguet *et al.*, J Neurosci Methods 2007 Dubois *et al.*, Neuroimage 2010 Lebenberg *et al.*, NeuroImage 2010

Clarification

Chung et al, Nature 2013

High performance computing

Deep Learning et Machine Learning : une révolution dans l'intelligence artificielle

- Nicolas Souedet
- C. Clouchoux
- C. Bouvier
- Anne-Sophie Hérard
- Didier Thenadey

MINDt team (M. Dhenain)

- Philippe Hantraye
- Emmanuel Brouillet
- Gilles Bonvento
- Romina Aron-Badin
- Carole Escartin
- Caroline Jan
- Et tous les autres... en particulier

J. Dauguet, A. Dubois, J. Lebenberg, M. Vandenberghe, Y. Balbastre, Z. You

- Jean-François Mangin
- Denis Rivière
- Yann Cointepas
- Vincent Frouin
- Clara Fischer
- Yann Leprince

Programme transversal Technologies pour la Santé (CEA)

CRS